Nuclear Fusion Energy News: Infinite Power by 2030 with Nuclear Fusion Reactor?
Here is the opening of this encouraging article by Daniel Ketchum for Inquisitr:
Nuclear fusion energy has often been sarcastically said to be always 30 years away. This scientific inside joke is meant to suggest we will never have the technology to make a working commercial nuclear fusion reactor. But despite the disappointments and failed promises over the last 50 years, the latest news suggests we might have reached a turning point in fusion energy research.
Many people confuse nuclear fusion reactors with nuclear fission reactors. But fission operates on the principle of placing enough fissionable radioactive material – uranium or plutonium – together that a chain reaction will take place in which particles given off by the fuel smash into other atoms in the material to produce excess energy.
This reaction has to be carefully managed through various means – including non-fissionable control rods – to avoid a disastrous runaway reaction.
But all of the concerns that people have about fission reactors – and these concerns are definitely justified following the incidents at Chernobyl and Fukushima – don’t apply to a fusion reactor. Nuclear fusion reactors cannot melt down, explode, or otherwise fail catastrophically in a way that threatens the environment.
If a nuclear fusion reactor did have a problem, it would simply stop working. In addition, the nuclear fusion energy production process produces very little radioactive waste – and what waste is produced has a much shorter half-life than the long-lasting, highly dangerous radioactive byproducts created by fission.
Another advantage that a commercial fusion reactor would have over fission reactors is that fissionable materials are extremely difficult to find and process for use, making them very expensive and essentially a limited resource. A nuclear fusion reactor would likely use deuterium, which can be extracted from ordinary seawater in virtually unlimited quantities.
Energy production via a nuclear fusion reactor has been on the wish list of many governments around the world, which is why an international project known as ITER was established to construct a massive experimental tokamak fusion reactor. As reported by the Manufacturer, the purpose is to confirm the feasibility of large-scale production of fusion energy.
The ultimate goal of the project is for ITER to be the first fusion reactor to achieve the production of more energy than it requires to operate. Reaching this breakeven point has been the Holy Grail of fusion research. Thirty-eight nations have joined this effort to construct the experimental ITER reactor in southern France – with the cost being astronomical.
However, the scientists, engineers and bureaucrats running this program admit that it will be many decades – perhaps as far away as 2050 – before an actual commercial reactor based on ITER will be in operation.
It has become virtually a mantra for nuclear fusion energy researchers that bigger is, in fact, better when it comes to building a nuclear fusion reactor. This is why governments are pouring tens of billions of dollars into the construction of the colossal experimental ITER reactor – that itself will not produce energy for consumption.
Fortunately, a number of other private organizations and companies around the world are trying to make fusion power a reality much quicker, perhaps even as soon as 2030. In addition, several individual governments have their own private nuclear fusion energy programs apart from ITER.
Nuclear fusion has long been the holy grail of global energy, with no Parsifal equivalent in sight. That may be changing, although it would not make a great opera. However, more wealthy people, governments and university science departments are investing increasingly large sums of money to achieve nuclear fusion.
When they succeed, which I would define as generating far more energy than they use in the process of creating nuclear fusion, it will be the greatest invention of all time.
Back to top