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Abstract

We solve the problem of optimal securitization for an issuer facing heteroge-
neous investors with arbitrary time and risk preferences. We show that the optimal
securitization is characterized by multiple nonlinear tranches, and each investor
gets a portfolio of these tranches. In particular, when all agents have CARA util-
ities, the linear tranching is optimal, with the number of tranches being less than
or equal to the number of potential investors. To the best of our knowledge, this is
the first model in the literature that explains the appearance of multiple tranches
in the security design and the relation of the tranche thresholds to microeconomic
characteristics.

We show that the boundaries of the tranches can be efficiently calculated
through a fixed point of a contraction mapping. We use these contraction mapping
techniques to derive a number of comparative static results for optimal securitiza-
tion. The model generates theoretical predictions and numerical simulations that
agree with several recent empirical findings concerning the CDO structure.

Keywords: securitization, tranching, heterogeneity, mortgage backed securities,
asset backed securities
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1 Introduction

Since its inception almost 40 years ago, the asset securitization industry has grown to a

multitrillion dollar business. The practice of creating multiple tranches from an asset pool

is now widely adopted by financial engineers to securitize various assets, including home

morgages, automobile loans, credit card receivables, corporate loans, and defaultable

bonds.

Tranching makes the securitization very flexible and allows financial intermediaries

to design securities with highly heterogeneous characteristics that are “tailor-made” to

meet diverse risk/return needs of potential investors. This flexibility naturally leads to

the following optimal securitization problem: How can the issuer design securities that

optimally make use of investors’ heterogeneity? The goal of this paper is to study this

problem. We capture investors’ heterogeneity through their risk and time preferences

as well as their endowments, and we do not limit the potential securities to debt and

equity but include general limited liability securities, whose payoffs are backed solely by

the given assets. An obvious question is whether reasonable assumptions lead to the

optimality of tranching or some other simple securitization procedures.

To better illustrate our approach to the above research question, we describe the

overall structure of our model as follows. The issuer possesses some assets, generating

a cash flow X with maximal value X̄ at time one. To raise capital at time zero, the

issuer designs a basket of N limited liability securities, with N being less than or equal

to the number of types of different investors in the market.1 Issuing securities is costly,

and we allow for both proportional and fixed issuing costs. The security i is a claim to

a nonnegative payment Fi = Fi(X), contingent on the realization of X. The securities

1As in Bolton and Scharfstein (1996), the issuer optimally decides, with which investors to trade,

and so N may happen to be strictly smaller than the number of avalable investor types.
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are backed solely by X, so that the total cash flow generated by all securities never

exceeds X. To focus on the role of clientele effects arising from differences in preferences

and endowments, we ignore the effects of asymmetric information and moral hazard

and assume that the probability distribution of X is exogenously given and all market

participants agree on it.2. Given the investors’ heterogenous preferences, endowments

and reservation utilities, the issuer knows the highest price that each investor is willing

to pay for a particular security.

Our first main result is that the optimal securities can be described in terms of

an endogenously determined optimal tranching. To design the optimal security, the

issuer first optimally decides how much money to get from each of the investors. These

amounts determine the investors’ maximal marginal rate(s) of intertemporal substitution

(MMRIS),3 which captures the maximal marginal prices they are willing to pay at time

zero for getting an infinitesimal part of X at time one. Then, the issuer ranks the

investors according to the MMRIS of each investor and determines the optimal tranching

of X with X =
∑

j Tranche(Zj, Zj+1). Here, Tranche(a, b) = max(a , min(X, b)) − a is

a standard tranche security, and the tranche thresholds, 0 = ZN+1 ≤ ZN ≤ · · · ≤ Z1 ≤

Z0 = X̄, are determined optimally given the investors’ MMRIS.

The first very important decision that the issuer makes is whether to sell the super-

senior standard debt Tranche(0, ZN). We show that the super-senior tranche is only sold

if the retention costs are relatively high, so that there exists an investor whose MMRIS

is larger than that of the issuer. If there are K investors whose MMRIS are larger

2Note that we do not need to require that the market participants know the true distribution of

X, but rather that they have the same beliefs about it. In particular, the risk premium they require

for buying securities could also be interpreted as an uncertainty premium the investors charge for not

knowing the exact distribution of X

3We elaborate on this important concept in Section 5.
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than that of the issuer, the standard debt security Tranche(0, ZN−K+1) is fully sold to

these investors. Namely, the super-senior Tranche(0, ZN) is sold to the investor with

the highest MMRIS, the second senior tranche is shared by the two investors with the

highest MMRIS, the third senior tranche is shared by the three investors with the highest

MMRIS, etc. The junior (equity) part of X, Tranche(ZN−K+1, X̄), is never fully sold.

Namely, for every subsequent (in seniority) tranche inside this junior part, the issuer

adds the next highest ranked investor to those who already hold senior tranches and

shares this tranche with all these investors.

If the retention costs are low, the issuer retains the super-senior tranche and never

fully sells any of the tranches. Then, the security design is similar to that in the previous

paragraph: The issuer gradually sells parts of the tranches to the investors in the order of

their decreasing MMRIS, so that the investor with the highest MMRIS gets a part in all

tranches (except for the super-senior one), the investor with the second-largest MMRIS

gets a part in all tranches except for the first two senior ones, and so on. Finally, the

investor with the smallest MMRIS gets only a part of the most junior (equity) tranche,

i.e., Tranche(Z1, Z0).

This prioritized tranche-sharing structure is very intriguing. It arises because of

investors’ risk aversion and the heterogeneity of their marginal valuations. The issuer

optimally sells the most attractive senior tranche she wants to sell to the investor who

values it the most. However, because this investor is risk averse, the marginal value

of this tranche decreases with the level of cash flows. Precisely as the level of cash

flow reaches the tranche threshold, the investor’s marginal valuation reaches that of the

second-highest ranked investor, and it is optimal for the issuer to sell a part of the

subsequent tranche to this second-best investor. Continuing the process gradually, as

the level of cash flow increases, investors with lower marginal valuations start getting

parts of the relatively junior tranches, until the whole range of X is exhausted. Some of
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the junior tranches may collapse to one point X̄, in which case the investor(s) with the

lowest MMRIS do not get anything. Interestingly enough, when all market participants

have exponential (i.e., constant absolute risk aversion (CARA)) utility functions, the

risk sharing inside each tranche is linear, and optimal securities are given by portfolios

of tranches.

The investors’ MMRIS are shadow prices (i.e., the Lagrange multipliers characterizing

this constraint-efficient allocation), and because of the structure described above, the

problem of optimal securitization reduces to that of calculating the investors’ MMRIS.

Our second main result is that the investors’ MMRIS can be calculated as a fixed point of

an explicitly constructed contraction mapping. This result is crucial, both for numerical

calculation of optimal securities and for studying the dependence of tranche thresholds

on the parameters of the model. We use it to derive comparative statics and make several

testable empirical predictions: (1) In most transactions initiated by an issuer, she sells

multiple tranches but retains fractions of these tranches; (2) if the quality of the assets

X is low and/or retention costs are high, the issuer sells the super-senior tranche; and

(3) if the issuer is risk averse, the quality of assets X is high and/or the retention costs

are low (i.e., the issuer’s discount rate is low), the issuer retains the super-senior tranche,

and the size of this non-securitized super-senior tranche is monotone increasing in the

assets’ quality and decreasing in the issuer’s discount rate.

Even though our model is “an abstraction that gives insight rather than a realistic

description of what we observe,”4 we can test the model’s predictions on the available

transaction data. The tranche structure predicted by the model makes collaterized debt

obligation (CDO) transactions prefectly suited for such a test.5 CDOs are often clas-

4Allen and Gale (1989).

5A CDO transfers the credit risk of a pool of underlying collateral to investors by tranching the

collateral cash flows into “tailor-made” securitized notes to meet the needs of different clientele.
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sified based on different criteria. For example, based on underlying collateral, CDOs

could be classified as collateralized bond obligations (CBOs), collateralized loan obliga-

tions (CLOs), etc. Based on issuance type, CDOs could be classified as cash flow CDOs

and synthetic CDOs, and, based on motivation, CDOs could be classified as arbitrage

CDOs and balance sheet CDOs. Until the recent crisis, CDOs were considered to be

the fastest growing sector in the asset-backed security (ABS) market.6 The global CDO

issuance volume was estimated to be USD 157.14 billion in 2004, USD 271.8 billion in

2005, and USD 520.6 billion in 2006,7 although in more recent years the issuance vol-

ume has decreased because of the financial crisis. Surprisingly, there is little academic

literature devoted to theoretical or empirical studies of CDO transactions. We make use

of a recent paper by Franke, Herrmann, and Weber (2007) that provides extensive em-

pirical analysis of a large database of European CDO transactions. Franke, Herrmann,

and Weber observe that: “information asymmetry is strong for collateralized loan obli-

gations because loans are often given to small- or medium-sized firms whose identity is

not revealed to investors. By contrast, in collateralized bond obligations (CBO), bond

issuers are revealed and often are big firms or governments with publicly available infor-

mation. Thus, for CBOs, the asymmetric information effect must be relatively small.”

Our model therefore should work better for CBO than CLO transactions. The most

surprising finding of Franke, Herrmann, and Weber is that, in 54 percent of CBO trans-

actions, the issuer retains the super-senior tranche. This is quite puzzling, given that

most of the existing literature on security design predicts that the super-senior tranche

should always be sold as it is the least informationally sensitive. Our model provides an

explanation of this surprising phenomenon based on the risk aversion of the issuer. In

fact, the three predictions 1-3 are confirmed by their findings. For prediction 1, Franke,

6Fabozzi, Davis, and Choudhry (2006), page 120.

7Securities Industry and Financial Markets Association Press release (2009-01-15)
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Herrmann, and Weber find evidence that most transactions initiated by the issuer have

three to five differently rated tranches. Based on our model, we conjecture that there

are about five different investor classes whose clientele effects the issuers typically ad-

dress. Furthermore, DeMarzo (2005) notes that “while intermediaries sell off many of

these CMOs, they also retain significant fractions for their own portfolios,” again in

agreement with prediction 1. Predictions 2 and 3 are also confirmed by the findings of

Franke, Herrmann, and Weber.8 We conclude that, although the world economic crisis

that started in 2007 has led many to critize securitization, our theory shows that the

basic ideas of securitization are sound and could be used to improve the social welfare if

carried out properly. As stated by Bernanke in a 2008 speech, “the ability of financial

intermediaries to sell the morgages they originate into the broader capital market by

means of the securitization process serves two important purposes: First, it provides

originators much wider sources of funding than they could obtain through conventional

sources, such as retail deposits; second, it substantially reduces the originator’s exposure

to interest rate, credit, prepayment, and other risks associated with holding mortgages

to maturity, thereby reducing the overall costs of providing mortgage credit.”9 If in the

future the counterparties seriously screen the underlying pool to reduce the issues of

asymmetric information, our optimal security design model could be used by security

issuers to efficiently raise cash and better serve those purposes.

8See Hypotheses 11, 12, and 13, for which they find strong empirical support. We discuss these

findings in greater detail in Section 8. Franke, Herrmann, and Weber also test several other hypotheses.

However, these hypotheses are related to asymmetric information and cannot be tested in our model.

9www.federalreserve.gov/newsevents/speech/bernanke20081031a.htm
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2 Related Literature

The literature of optimal security design is vast. Probably the most closely related to

ours is the paper by Allen and Gale (1989). They consider an economy, populated

by firms and individuals. Each firm has several production plans and can issue two

securities against each production plan. Issuing securities is costly. Individual investors

cannot issue securities and also cannot short sell the firms’ securities.10 Furthermore, all

investors know the prices of all securities that could potentially be issued in equilibrium.

The issued securities are traded in a centralized market, and the prices are determined

in a Walrasian equilibrium through market clearing.11

Allen and Gale show that an equilibrium always exists and all equilibrium allocations

are Pareto-efficient. Their main result states that when the costs of issuing securities

are fixed (i.e., the costs depend only on the number of issued securities and not on their

nature), optimal securities are extreme: In any state of nature each security promises

either the entire product of the firm or nothing. Firms optimally utilize the heterogeneity

of investors’ marginal valuations and design securities so that in every state all payoffs

are allocated to the security held by the group that values it most.

The main difference between our model and that of Allen and Gale is that, in contrast

to Allen and Gale, transactions in our model are over the counter (OTC) and there is

no unique price for a given security. Each investor values a particular security in a

different way, depending on his duration needs, capital requirements, and target risk-

10Or, equivalently, the cost of short selling is very high. Otherwise, short selling would be equivalent

to issuing the security.

11In a subsequent paper, Allen and Gale (1991) consider a modification of their 1989 model in which

short selling is allowed and there is a finite number of competing firms. They study efficiency of

equilibrium allocations and do not characterize the nature of optimal securities.
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return tradeoff.12 Thus, the firm’s objective is quite different in our model: Whereas in

Allen and Gale (1989) the firm capitalizes on heterogeneous marginal valuations, in our

model the firm uses differences in true valuations.13 We also note that Allen and Gale

assume that the firm does not get utility from future consumption, and therefore the

payoff of the two securities is assumed to exhaust the production plan. For this reason,

they cannot address the important empirical phenomenon that firms almost always retain

a part of the assets.

The contribution of Allen and Gale is certainly of fundamental importance. However,

since most of the ABS transactions are OTC, we believe that our model is better suited

for studying the design of this class of securities. Furthermore, most real-world securities

(e.g., tranches) have a monotone, continuous payoff. This empirical evidence stands in

stark contrast to the optimality of extreme securities with discontinuous, potentially

non-monotone payoffs, as is the case in Allen and Gale’s model. It is also not clear how

optimal securities can be calculated in their model if firms are allowed to issue more than

two securities. By contrast, our model generates theoretical predictions that stand in

agreement with real-world securitization. It predicts that optimal securities are always

monotone increasing and continuous and explains why tranching is optimal and why the

super-senior tranche is retained by the issuer in many transactions. Furthermore, our

model generates a simple and efficient way to calculate optimal securities numerically

and to derive comparative statics results.

12Similarly to Allen and Gale, we model these differences in valuations through heterogeneity in

preferences and endowments.

13Namely, in the Allen and Gale (1989) Walrasian equilibrium, the price of any traded security

is uniquely determined and is the same for all market participants. However, due to short-selling

constraints, each security is only held by the investor who values it highest at margin. By contrast, in

our model, there is no predetermined price: Different investors are willing to pay different prices for the

same security.
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Another paper related to ours is Winton (1995). He studies the optimal securitization

problem for a manager of a firm whose output can only be verified privately at a cost.

The issuer optimally designs a basket of securities (contracts), one for each investor,

and investors optimally choose the set of states in which they verify the firm’s output.

Surprisingly, even though all investors are identical, Winton shows that symmetric con-

tracts (i.e., identical for all investors) are typically not optimal. Furthermore, when the

manager and all investors are risk neutral, tranching is optimal: The manager places

investors in an arbitrary order and then sells the tranches to the investors in the order

of their seniority. The costly state verification model of Winton is certainly important

for modeling leveraged buyouts and reinsurance contracts. However, it typically is not

appropriate for modeling ABSs such as CBOs, where defaults (and hence the payoffs)

are directly observable. Also, it is not clear from the results of Winton how the optimal

tranche levels can be calculated and whether the results can be extended to the case

when investors are risk averse. Winton notes that “the question of whether prioritized

contracts are optimal when both manager and investors are risk averse remains open”

(p.112). Our results are generally applicable and do not depend on the risk-neutrality

assumption. They can be used to calculate optimal allocations as long as they are con-

strained efficient. In our model, investors are heterogeneous, and multiple tranches are

optimally issued to address heterogeneous clientele. The ordering of investors by senior-

ity is endogenously determined by their preferences and endowments. We also note that

the number of creditors (i.e., investors to which the issuer sells securities) is endogenous

in our model and is determined optimally by the issuer. This is indirectly related to the

paper of Bolton and Scharfstein (1996).

A large part of the literature on security design focuses on the effects of asymmetric

information. DeMarzo and Duffie (1999) develop a model in which the issuer has private

information about the future payoff and signals a high value security by its willingness
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to retain a portion of the issue. They study the problem of ex ante security design: The

issuer designs the security before obtaining a signal about its value. DeMarzo and Duffie

show that, under certain conditions, the optimal ex ante security design is a standard

debt. DeMarzo (2005) studies whether pooling and tranching is optimal for an informed

security issuer. He shows that pooling may generate an information destruction effect

for the issuer, in which case it is optimal to sell the assets separately. However, when the

residual risk of each asset is not highly correlated, pooling and then selling a highly liquid

and low-risk standard debt (senior tranche) is optimal because of a risk diversification

effect. Both DeMarzo and Duffie (1999) and DeMarzo (2005) discuss the possibility of

issuing multiple tranches. For example, DeMarzo writes, “If the issuer creates multiple

tranches for an asset pool, then once the information is learned the issuer will choose a

quantity of each tranche, or a tranche portfolio, to sell to investors.” Since all investors are

identical in his model, issuing multiple tranches is in fact equivalent to issuing a single

security, whose payoff coincides with that of a portfolio of tranches. DeMarzo shows

that, due to a concave liquidity effect, the payoff of the issuer is monotone increasing

in the number of issued tranches, and as the number of issued tranches converges to

infinity, the optimal tranche portfolio converges to the ex post optimal security design.

Neither DeMarzo and Duffie (1999) nor DeMarzo (2005) show that issuing a finite tranche

portfolio is an optimal security design. By contrast, we show that issuing portfolios

of tranches is always optimal when all investors have CARA utilities and the optimal

number of tranches could be strictly smaller than the number of investor types.

Gorton and Pennachi (1990) and Boot and Thakor (1993) show that, when both

informed and uninformed investors are present in the market, it is optimal to split the

asset into two securities: one senior and less informationally sensitive security, and one

junior and more informationally sensitive security. Thus, their models have two types

of investors, differing in their informational characteristics. They assume that the issuer
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fully sells the assets and do not address the optimal retention problem.

Fulghieri and Lukin (2001) and Axelson (2007) study the security design problem

when outside investors have private information about the firm. They find that it is

often optimal for the issuer to retain the senior tranche (the standard debt) and the

optimal security may have a convex payoff. DeMarzo, Kremer, and Skrzypacz (2005)

study security bid auctions in which privately informed bidders compete in an auction

by bidding with securities, and they study the impact of moral hazard on the investors’

optimal security design. Diamond (1993) analyzes optimality of short-term and long-

term debt of different seniority. Hartman-Glaser, Piskorski, and Tchistyi (2009), Tchistyi

(2009), and Piskorski and Tchistyi (2009) study optimal security design under moral

hazard. None of these papers studies the effect of heterogeneous investor clientele on the

securitization.

Some papers study the role of the value of control for a corporation and the agency

costs in the management of the firm in the security design. See Harris and Raviv (1992)

for a survey. Another large part of the literature is motivated by spanning risks. For

surveys, see Allen and Gale (1994) and Duffie and Rahi (1995). Comprehensive surveys

of the security design literature can be found in Harris and Raviv (1991) and in Allen

and Winton (1995). Neither of these surveys discusses optimal securitization in OTC

markets in the presence of heterogeneous clientele.

Several papers study implications of marketing costs for security design. For ex-

ample, Madan and Soubra (1991) introduce marketing costs into the Allen and Gale

(1989) model and show that the sharing of cash flow in several states may be optimal.

Ross (1989) also explores the implications of marketing costs and shows that financial

innovation can reduce the costs of marketing securities.

Several papers study the CDO design and structure of subordinated tranches em-

pirically. See Duffie and Garleanu (2001), Mitchell (2004), Fender and Mitchell (2005),
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Franke, Herrmann, and Weber (2007), An, Deng, and Sanders (2008), and Franke and

Weber (2009).

The remainder of the paper is organized as follows. Section 3 presents a formulation of

the security design problem. Section 4 contains a complete solution to the security design

problem when there is a single investor. In Section 5, we characterize optimal securities

for an arbitrary number of investors. Section 6 shows how optimal tranche boundaries

can be computed using the fixed point of a contraction mapping and provides several

important comparative statics results. Section 7 presents a special case when all investors

have CARA utilities, in which we show the optimality of standard tranche portfolios.

Section 8 considers the case when the issuer is risk-neutral. Section 9 investigates the

effects of fixed costs of issuing securities on security design. Section 10 concludes the

paper and points out some future research directions.

3 The Problem of Security Design

The model’s participants consist of an issuer and a set of N outside investors. The issuer

owns assets that generate future cash flows given by a nonnegative bounded random

variable X with esssupX = X̄. In addition, the issuer is endowed with some other (not

explicitly modeled) assets, generating a cash flow (w0 , w1). The issuer is an intertemporal

expected utility maximizer, with von Neumann-Morgenstern utility uS and a discount

rate ρS

Investor i , i = 1, · · · , N is endowed with an income flow (w0i , w1i). Each investor is

an intertemporal expected utility maximizer, with a von Neumann-Morgenstern utility

ui and a discount rate ρi. All utilities are assumed to satisfy standard Inada conditions.

For simplicity, we assume that the cash flows (w0, w1) and (w0i , w1i), i = 1, · · · , N

are deterministic and exogenously given. Our results directly extend to the case when

endowments are stochastic; however, the expressions become more complicated, and we
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omit it for the reader’s convenience. In particular, we do not address security design,

motivated by spanning risks in incomplete markets. We also do not consider the possi-

bility of trading in other securities to reallocate capital between states and time periods

and hedging a part of the risk inherent in X. Our techniques can be directly extended

to allow for hedging and raising cash using bonds or other securities, and we leave it for

future research.

It is important to note that the preference parameters (ρS , uS) and (ρi , ui) should not

be interpreted directly as the “true” preferences of the investors. Rather, this is a stylized

way to model the issuer’s and the investor’s subjective attitude to the particular sources

of risk and return of the assets X. For example, if the discount rate ρS is relatively high,

the issuer (e.g., a financial intermediary, such as a bank or a credit card company) faces

a high cost of holding the assets (equivalently, the issuer has highly profitable investment

opportunities), and so the issuer’s demand for funds is high. Alternatively, the discount

rate may be high because the issuer may face credit constraints or, as for many banks

and others in the financial services industry, binding minimum capital requirements.14

Similarly, investors may have different demands for assets (e.g., with different duration

and risk). An investor’s risk aversion, determined by ui, can be interpreted as the size

of the risk premium the investor requires for holding the particular type of risk, inherent

in X.

To raise cash, the issuer creates a basket Fi , i = 1, · · · , N of limited-liability securi-

ties backed by the asset X.15 We assume that there is no asymmetric information and

14By placing the loan portfolio in a so-called special purpose vehicle (SPV) and selling the tranches

to investors, a bank can remove that portion of its loan portfolio from its balance sheet and thereby

expand its lending capacity.

15Note that Fi could be interpreted as a portfolio of Arrow-Debreu like securities with the continuous

state space [0, X̄]. Nevertheless, we refer to Fi as a security for simplicity. Later on in the paper, we will

show that with exponential utility functions, Fi is actually a linear combination of some basic securities:
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therefore the true probability distribution of the payoff Fi ≥ 0 of the security i is known

to all market participants. The claims of security holders are secured solely by the asset

X, and therefore the basket satisfies:

F =
N∑

i=1

Fi ≤ X.

Given a security design (Fi), the issuer retains the residual cash flow X − F.

We assume that the issuer is a monopolist. He offers a security Fi to investor i,

and the investor offers him the price Pi = Pi(Fi). Issuing securities is costly, with

both fixed and variable costs for each transaction. For example, there are legal fees and

accounting fees at inception at the securitization level. At the tranche level, there are

underwriting and rating agency fees.16 For simplicity, we assume in our model that there

is a variable cost Ci of issuing a security i being proportional to its price, Ci = αPi for

some α ∈ (0, 1) . In Section 9, we introduce fixed issuing costs on top of the proportional

costs.

As is common in the optimal contracting literature, we assume that an investor is

willing to take any contract (Pi , Fi) satisfying the investor’s participation constraint

ui(c0i) + e−ρi E[ui(c1i)] ≥ Li, (1)

where

c0i = w0 − Pi , c1i = w1i + Fi(X)

tranches, which are anagolous to the Arrow-Debreu securities.

16We thank Sean Reddington and Steve Parsons from BNP Paribas for useful comments on the cost

of securitization.
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is the investor’s consumption after entering the contract, and

Li = ui(w0i) + e−ρi ui(w1i)

is the investor’s reservation utility, equal to the utility before entering the contract.17

Given the contracts (Pi , Fi) , i = 1 , · · · , N, the issuer’s consumption is given by:

c0S = w0 + (1 − α)
N∑

i=1

Pi, c1S = w1 + X − F (X) . (2)

The issuer’s securitization problem is to design the basket (Fi) so as to maximize his

utility,

uS(c0S) + e−ρS E
[
uS(c1S)

]
,

under the budget constraints (2) and participation constraints (1).

Because the issuer may optimally decide to retain a part of the assets used to back

the security payoffs, her problem does not simply reduce to maximizing the amount she

receives from the investors. Rather, the problem for the issuer is to allocate the payoffs

of the securities across states of the world to maximize her expected utility from both

selling securities and retaining part of the assets. If the quality of the underlying assets

is high and the retention cost of keeping a part of the assets is low, the issuer might be

willing to retain a large part of them. However, the investors will also pay a higher price

for a given slice of these better quality assets, increasing the issuer’s incentive to sell.

Different risk attitudes and time preferences also generate a similar tradeoff.

Finally, we note that, by monopolist assumption, participation constraints (1) are

17The assumption that the reservation utility coincides with the utility before entering the contract is

made for technical purposes, to avoid discontinuities in the price Pi. It is possible to relax this assumption

at the cost of getting messier results.
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always binding for the investors, and therefore the trade will always happen at the price:

Pi(Fi) = w0i − vi(Li − e−ρi E[ui(w1i + Fi(X))]) , (3)

where vi is the inverse of the investor’s utility,

vi(ui(x)) = x.

4 Single Investor

In this section we present a solution to the optimal security design problem for the case

of a single investor. Since there is only one investor i = 1, we use index B to denote the

corresponding characteristics (w0B, w1B), ρB and uB.

If the constraints 0 ≤ F (X) ≤ X are not binding, risk sharing between the issuer

and the investor is Pareto-efficient and maximizes social welfare:

max
F

(
uS(w1 +X − F ) + a uB(w1B + F )

)
for some welfare weight a > 0. Writing down the first-order condition, we get that

F (x) = g(a, x) where the function g(a, x) is the unique solution to:

a u′B(w1B + g) − u′S(w1 + x − g) = 0 . (4)

By definition, our allocation is constrained Pareto-efficient, and therefore the function (4)

describes the optimal allocation for those values of X for which the constraints are not

binding, and F (X) = 0 or X when the corresponding constraint is binding. Below, we

provide necessary and sufficient conditions for the constraints to be binding and describe

the corresponding regions of values of X.
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To this end, we need several definitions. Let

Pmax = w0B − vB (LB − e−ρB E[uB(w1B +X)])

be the price that the investor is willing to pay for getting the whole X (that is, when

the constraint F (X) ≤ X is binding for all values of X), and let

Pmid = w0B − vB

(
LB − e−ρB E

[
uB

(
w1B + g

(
u′S(w1)

u′B(w1B)
, X

))])

be the price of the security that the investor would get if the constraints 0 ≤ F ≤ X

were not binding and a = u′S(w1)/u
′
B(w1B). Then, define

Kmax = log
u′S(w1)/u

′
S (w0 + (1 − α)Pmax)

(1 − α)u′B(w1B + X̄)/u′B(w0B − Pmax)
,

Kmid = log
u′S(w1)/ u

′
S (w0 + (1 − α)Pmid)

(1 − α)u′B(w1B)/u′B(w0B − Pmid))
, and

Kmin = log
u′S(w1 + X̄)/u′S (w0)

(1 − α)u′B(w1B)/u′B(w0B)
.

(5)

All three numbers, Kmax , Kmid , Kmin, are given by differences between the growth rates

of the undiscounted marginal values of consumption of the issuer and the investor. Kmax

corresponds to the case when the investor gets the whole X and is calculated at the

maximal level X̄. Similarly, Kmid corresponds to the case when the constraints 0 ≤ F ≤

X are not binding and is calculated at X = 0. Finally, Kmin corresponds to the case when

the constraint F ≥ 0 is binding for all values of X so that there is no trade (F = 0),

and the constraint is calculated at the maximal level X = X̄. It follows directly from

the definition that

Kmax > Kmid > Kmin .

We also need the inverse of the investor’s marginal utility IB and the inverse of the
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issuer’s marginal utility IS:

IB(u′B(x)) = x

IS(u′S(x)) = x .

Under the conditions described, we can state:

Theorem 4.1 (1) If

ρS − ρB > Kmax,

then full selling is optimal,

F (X) = X ;

(2) if

Kmax > ρS − ρB > Kmid,

then there exists a threshold Z(a) ∈ (0 , X̄) such that F (X) is a combination of a

standard debt and Pareto-optimal sharing (4) for X ≥ Z(a),

Fa(X) =


X , X ≤ Z(a)

g(a,X) , X > Z(a)

;

(3) if

Kmid > ρS − ρB > Kmin,

then there exists a threshold Z(a) ∈ (0 , X̄) such that the issuer retains the part

of X below Z(a) and optimally shares risk according to (4) for X ≥ Z(a),

Fa(X) =


0 , X ≤ Z(a)

g(a,X) , X > Z(a)

; and
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(4) if

Kmin > ρS − ρB,

then there is no trade, that is, F (X) = 0.

Furthermore,

Z(a) =


IB(a−1u′S(w1)) − w1B in case (2)

IS(a u′B(w1B)) − w1 in case (3)

,

and a is the unique solution to

a =
(1 − α) eρS u′S (w0 + (1 − α)PB(Fa(X)) )

eρB u′B
(
w0B − PB(Fa(X))

) , (6)

where PB is given by (3).

There are several interesting features of the optimal security that are different from

those typically present in a model with asymmetric information and risk-neutral in-

vestors. First, the optimal security F is always monotone increasing. In contrast, in

asymmetric information models, the optimal security is not necessarily monotone in-

creasing, and monotonicity of F has to be imposed as an additional constraint. See

DeMarzo and Duffie (1999).

Furthermore, in contrast with most of the existing literature on optimal security

design (see, e.g., DeMarzo and Duffie (1999), DeMarzo (2005), and Hartman-Glaser,

Piskorski, and Tchistyi (2009)), we do not need to require that the discount rate of the

issuer be larger than that of the investor. When both the issuer and the investor are

risk averse and the essential supremum X̄ of X is sufficiently large, the trade will always

take place, even if ρS is much smaller than ρB.

To gain a better understanding of the intuition behind the optimal risk sharing of
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Theorem 4.1, let us calculate the maximal marginal price πB the investor is willing to

pay at time zero for an additional unit of optimal consumption at time one. Clearly, πB

is determined by the equality of the marginal utility loss πB u
′
B(c0B) and the marginal

utility gain e−ρB u′B(c1B) :

πB u
′
B(c0B) = e−ρB u′B(c1B) ⇔ πB =

e−ρB u′B(c1B)

u′B(c0B)
. (7)

That is, πB is equal to the marginal rate of intertemporal substitution (MRIS) of the

investor.18

Similarly, the minimal marginal price πS the issuer is willing to accept at time zero

in exchange for losing a unit of consumption at time one is given by:

πS =
e−ρS u′S(c1S)

(1 − α)u′S(c0S)
, (8)

which is equal to the MRIS of the issuer.19 The trade will only take place if the investor

is willing to pay more than the issuer is willing to accept:

πB ≥ πS . (9)

18Note that, in a Walrasian equilibrium, the first-order conditions for an investor B holding an asset

with payoff D at time one imply that the price P0 of this asset at time zero is given by

P0 = E[πB D].

For this reason, πB is commonly referred to as the the pricing kernel, or stochastic discount factor (see

Duffie (2001)). In our model, πB only determines the marginal value of the payoff and not its true value,

which may be different across investors.

19 Here, the factor (1−α) appears in the denominator because of the issuing costs. However, we still

refer to this quantity as the MRIS for convenience.
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In general, the inequality πB ≥ πS will be violated for some levels of X. If the cost

of holding assets is very high, ρS will be so large that the issuer will be willing to sell

the whole X to the investor (case (1)). Since uS and uB are concave, the marginal

consumption values u′S and u′B are decreasing in the level of X. If ρS is high, but not too

large (case (2)), inequality (9) will hold for small values of X. However, as X becomes

sufficiently large, the marginal benefit u′B(c1B) from holding the security F becomes too

small, the investor is not willing to pay a high enough price for getting high levels of X,

and it is optimal for the issuer to retain a part of the upper tail of X.

If the discount rate ρS is relatively low (case (3)), the marginal benefit of the issuer

from holding the lower (less risky) part of X is high, and it is optimal for the issuer to

retain it. However, as the level of X increases, the marginal benefit starts going down

until it becomes so small that the issuer is willing to sell part of it to the investor. Finally,

if the discount rate ρS is very small (case (4)), the marginal benefit of X is so high that

the issuer retains the whole X.

Differentiating (4), it is possible to show (see, e.g., Wilson (1968)) that:

d

dx
Fa(X) =

RB(c1B)

RB(c1B) + RS(c1S)
, (10)

where

RK(x) = −u
′
K(x)

u′′K(x)
, K = B , S.

That is, the slope of the optimal security is determined by the investor’s risk tolerance

relative to that of the issuer. When the investor’s risk tolerance is high, the investor

will be willing to take more risk for a smaller price, and the slope will be close to 1.

However, if the issuer’s risk tolerance is high, the issuer will be willing to hold more risk,

and therefore the slope of Fa will be small. In the extreme case when the issuer is risk

neutral, the slope converges to zero, and we arrive at the following proposition.
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Proposition 4.2 Suppose that the issuer is risk neutral. Then, the optimal security is

a standard debt,

F (X) = min(X , d)

for some d ≥ 0.

It is interesting to note that standard (risky) debt security min(X, d) is also optimal

for a large class of asymmetric information models when both the investor and the issuer

are risk neutral. See DeMarzo and Duffie (2009). Proposition 4.2 suggests that it is the

risk neutrality of the issuer that is responsible for this simple form of optimal security. In

the framework of mortgage and other loan securitizations, standard debt is also known

as the single tranche CDO. The face value d of the debt is often referred to as the first

loss position. We come back to these issues in Section 7.

Finally, we also note that the result of Theorem 4.1 is related to the literature of

optimal insurance design, in particular to the optimal insurance contract derived by

Raviv (1979). Raviv considered the following problem: The insured wants to buy insur-

ance against a random claim X. He designs an F (X) ∈ [0, X], and the insurer agrees to

pay him F (X) in exchange for payment P, determined through the insurer’s reservation

utility. Raviv showed that the optimal insurance contract F (X) is characterized by an

expression, similar to that of Theorem 4.1: F (X) = 0, or X for X below a threshold Z,

and F (X) is given by the Pareto-optimal sharing rule (4) for X above the threshold.

Raviv’s setup differs from ours in several important aspects: (a) the agent is buying

insurance against losses X, whereas in our setting the issuer is selling a part of the profits

X; (b) Raviv considers a zero period model, so there is no discounting, and the issue of

raising cash does not arise; (c) insurance is costly for the insurer, with the cost being a

function c(F ). Raviv shows that the optimal contract is characterized by a deductible

(i.e., case (3) of Theorem 4.1 takes place) if and only if the cost c of insurance depends

on the insurance payment. In contrast to Raviv’s result, we show that, due to the
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multi-period nature of our model, the structure of the optimal contract is determined

by the MRIS of the investor and the issuer, i.e., (7) and (8). Furthermore, Raviv does

not show when each of the four cases of Theorem 4.1 occurs and does not provide any

expression for the threshold Z of the deductible. By contrast, we explicitly characterize

when each of the regimes (1) through (4) occurs and provide a closed-form expression

for the threshold Z(a).

5 Heterogeneous Investors

In this section we extend Theorem 4.1 to the case of multiple heterogeneous investors.

To understand why heterogeneity is important, let us first examine the case when all

investors are risk neutral. In that case investor i is willing to pay

Pi(Fi) = e−ρi E[Fi(X)]

for a security Fi. Therefore, diversifying between different investors is never optimal for

the issuer. The investor with the lowest discount rate will always be willing to pay the

highest price, and the issuer will always sell the whole F =
∑

i Fi to this investor because

the pricing is linear. Namely,

∑
i

Pi(Fi) ≤ e−ρmin

∑
i

E[Fi] .

Thus, with risk neutrality, heterogeneity does not play any role for securitization. How-

ever, when investors are risk averse, the situation is completely different: Every investor

gets a non-zero part of X if the the maximal payoff X̄ is sufficiently large.

Proposition 5.1 The following are true:

• If all investors are risk neutral, then only the investor with the lowest discount rate
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will participate in a trade.

• If investors are risk averse and X̄ is sufficiently large, then all investors investors

will get a non-zero part of X.

The drastic difference between the risk-neutral case and the risk-averse case arises

because the marginal value of an additional unit of X for a risk-averse investor is mono-

tone decreasing with the level of X. Suppose, for example, that there are two investors,

1 and 2, and the discount rate ρ1 of investor 1 is much lower than that of investor 2.

Then, clearly, investor 1 typically is willing to pay more for a security than investor 2.

However, as the level of X becomes sufficiently high, investor 1’s MRIS decreases and

eventually becomes smaller than that of investor 2. It therefore becomes optimal for the

issuer to sell a part of the high-risk portion of X to investor 2.

It turns out that the nature of the optimal allocation is uniquely characterized by

the investors’ maximal marginal rates of intertemporal substitution (MMRIS)

Yi =
e−ρi u′i(w1i)

u′i(c0i)

and the issuer’s MMRIS

YS =
e−ρS u′S(w1)

(1 − α)u′S(c0S)
.

Here,

c0i = w0i − Pi(Fi) and c0S = w0 + (1 − α)
∑

i

Pi(Fi).

Note that fixing Yi is equivalent to fixing the prices Pi(Fi) the investors pay to the

issuer. Given the optimal allocation (Fi), we assign rankings to investors according to

the following definition.

Definition 5.2 For an investor i, we denote by rank(i) the number that the investor

will have when all investors are reordered so that larger rank(i) implies larger Yi. That

24



is, rank(i) = N if investor i has the largest Yi, rank(i) = N − 1 if investor i has the

second largest Yi, etc., and rank(i) = 1 if investor i has the smallest Yi.
20

Furthermore, we denote by J the number of investors for which Yi is smaller than

YS.

Having defined the ranking order, we can define the tranche thresholds.

Definition 5.3 For each i = 1, · · · , N , let:

ai
def
=

eρS (1 − α)u′S(c0S)

eρi u′i(c0i)
=

Yi e
ρS (1 − α)u′S(c0S)

u′i(w1i)
. (11)

Fix k ∈ {0, 1, · · · , N,N + 1}.

• For k = 0 we define

Z0 = X̄.

• For 1 ≤ k ≤ J, let K = rank−1(k) be the investor whose rank is equal to k and

Z̃k = IS(aK u′K(w1K)) − w1 +
∑

i : rank(i)≥k+1

(
Ii
(
a−1

i aK u′K(w1K)
)

− w1i

)
(12)

and

Zk = min{X̄ , Z̃k}.

• For k = J + 1 we define:

Z̃J+1 =
∑

i : rank(i)≥J+1

(
Ii
(
u′S(w1) a

−1
i

)
− w1i

)
, (13)

20If two investors have the same Yi, we give them subsequent rankings in any order. However, it is

important to do it so that rank(i) 6= rank(j) for i 6= j.
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and

ZJ+1 = min{X̄ , Z̃J+1}.

• For J + 2 ≤ k ≤ N, let K = rank−1(k − 1) and

Zk =
∑

i : rank(i)≥k

(
Ii
(
a−1

i aK u′K(w1K)
)
− w1i

)
, (14)

and

Zk = min{X̄ , Z̃k}.

• For k = N + 1, we define ZN+1 = 0.

A direct calculation (see Appendix) implies that:

Z0 ≥ Z1 ≥ · · · ≥ ZN ≥ ZN+1 = 0.

The security,

Tranche(a, b) =


0 , x < a

x− a , x ∈ (a, b)

b− a , x > b

,

will be referred to as a tranche. For simplicity, we denote:

Tranchej = Tranche(Zj+1, Zj).

Note that Tranchej will be empty if Zj = Zj+1 . We say that an investor i participates

in the tranche, Tranchej, if Fi(x) 6≡ 0 for x ∈ (Zj+1, Zj) .

We are now ready to state the main result of this section.

26



Theorem 5.4 There always exists a unique optimal allocation {Fi}N
i=1. It is non-zero

(i.e., F (X) 6≡ 0) if and only if:

e−ρS u′S(w1 + X̄)

(1 − α)u′S(w0)
≤ max

i

e−ρi u′i(w1i)

u′i(w0i)
. (15)

If (15) holds, then the following is true:

(1) Optimal securities Fi and the retained part X − F (X) are continuous and (weakly)

monotone increasing in X;

(2) If Yi < YS, then the investor i only participates in tranches Tranchej with indices

j ≤ rank(i) − 1 ;

(3) If Yi ≥ YS, then the investor i only participates in tranches Tranchej with indices

j ≤ rank(i) ;

(4) The issuer fully sells the part of X below ZJ+1 and retains a part of X for X >

ZJ+1. That is,

F (X) =
∑

i

Fi(X) = X

if X ≤ ZJ+1 and F (X) < X ⇒ F (X) < X otherwise;

(5) For each Tranchej, there exists a function µj(X) such that:

e−ρi u′i(c1i)

u′i(c0i)
= µj(X) (16)

for all investors i participating in Tranchej. Furthermore,

(a) If j ≥ J + 1, then:

µj(X) >
e−ρS u′S(c1S)

(1 − α)u′S(c0S)
and
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(b) If j < J + 1, then:

µj(X) =
e−ρS u′S(c1S)

(1 − α)u′S(c0S)
. (17)

First, we note that Equation (16) and Equation (17) uniquely determine the alloca-

tion. Indeed, substituting c1i = w1i + Fi(X) into (16) gives Fi = Ii(µj(X)u′i(c0i) e
ρi)−

w1i. Then, for j ≤ J + 1, the function µj is uniquely determined by the constraint∑
i Fi(X) = X, and for j ≥ J, the function µj is uniquely determined by (17) and the

issuer’s budget constraint c1S = w0 + X −
∑

i Fi(X).

As we have explained above, the structure of the optimal securitization is determined

by the investors’ MRIS (16). Since both the issuer’s consumption c1S = w1 + X − F (X)

and the investors’ consumption c1i = w1i + Fi(X) are monotone increasing in X,

the marginal values u′S(c1S) and u′i(c1i) of the issuer’s and investors’ consumption are

monotone decreasing in X. If the MMRIS of all investors are smaller than that of the

issuer,21 then the super-senior tranche TrancheN is not sold at all. Consequently, for

X ∈ [0, ZN ],MRIS of each investor i stays constant (equal to the MMRIS Yi), whereas the

MRIS of the issuer is monotone decreasing with the value of X. By contrast, if there is at

least one investor i whose MMRIS Yi is larger than that of the issuer22, then the investor

with the highest rank N holds the whole super-senior tranche, TrancheN = [0, ZN ].

Furthermore, since F (X) = X for allX ∈ [0, ZJ+1], the MRIS of the issuer stays constant

(equal to YS) when X varies in this interval, whereas the MRIS of investors with ranks

higher than J are monotone decreasing with the value of X. Finally, for X ≥ ZJ+1,

both the MRIS of the issuer and the MRIS of all investors that already hold a part of

X are monotone decreasing in X. Thus, two things happen: The issuer is willing to sell

higher-risk portions of X at a lower price, and the investors that already own a part of

21That is, maxj Yj < YS

22That is, maxj Yj > YS .
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the senior tranches are not willing to pay a high enough price for an additional part of

X. These two effects become strong enough precisely when the level of X crosses the

corresponding threshold Zi, and the issuer then sells a part of X above this threshold to

the next investor in the hierarchy, determined by the rank of MMRIS.

We illustrate the structure of optimal securities in the following example.

Example. Suppose that there are three investors with

Y1 < YS < Y2 < Y3 .

Then, J = 1 and

X̄ = Z0 > Z1 > Z2 > Z3 > Z4 = 0

if X̄ is sufficiently large. In this case, optimal securities have the following structure:

• For x ≤ Z3, F3(x) = x, so investor 3 gets the whole super-senior tranche;

• For x ∈ [Z2, Z3], F2, F3 > 0 and F2 + F3 = X, so investors 2 and 3 share the full

pie;

• For x ∈ [Z1, Z2], investors 2 and 3 still share the pie, but the issuer retains a part

of it: F1 = 0, F2, F3 > 0 and F2 + F3 < X; and

• Finally, for x > Z1, F1, F2, F3 > 0 and F1 + F2 + F3 < X.

In particular, Tranche1 is a boundary between the full selling regime [0, Z2] and the

partial selling regime [Z1, X̄] with all investors participating. Investor 1 starts partic-

ipating in the tranches “with delay,” only after the intermediate (mezzanine) tranche

[Z2, Z1] is (partially) sold to investors 2 and 3.

It is well known (see, e.g., Borch (1962)) that, in an unconstrained Pareto-efficient

allocation, marginal utilities of all agents are co-linear for all values of X. Since our allo-
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cation is by construction constrained Pareto-efficient, Borch’s result is not true anymore.

However, Theorem 5.4 (Equation (16)) implies that, for each fixed tranche, the investors

participating in this tranche do share it in a Pareto-efficient way.

Recall that

Ri(x) = − u′i(x)

u′′i (x)

is the absolute risk tolerance of investor i. Wilson (1968) showed that the slopes of

sharing rules in a Pareto-efficient allocation can be characterized in terms of agents’

absolute risk tolerances. The following result is an extension of Wilson’s characterization

for the constrained Pareto-efficient allocation in our model.

Proposition 5.5 • For an investor i with rank(i) ≥ J + 1,

d

dx
Fi(x) =


0, x ≤ Zrank(i)+1

Ri(c1i)
P

j : rank(j)≥ k Rj(c1j)
, x ∈ (Zk+1, Zk), J + 1 ≤ k ≤ rank(i)

Ri(c1i)
RS(c1S)+

P

j : rank(j)≥ k+1 Rj(c1j)
, x ∈ (Zk+1, Zk), 0 ≤ k < J + 1

;

• For an investor i with rank(i) ≤ J,

d

dx
Fi(x) =


0, x ≤ Zrank(i)

Ri(c1i)
RS(c1S)+

P

j : rank(j)≥ k+1 Rj(c1j)
, x ∈ (Zk+1, Zk), 0 ≤ k ≤ rank(i) − 1

.

The intuition behind the formulae for the slope is the same as the one for formula

(10): The fraction of the aggregate risk the investor i ends up taking is proportional to

his risk tolerance. In particular, investors with high risk tolerance (low risk aversion)

generally are willing to pay more for the securities and, consequently, end up getting a

larger piece of the pie.
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6 Fixed-Point Equation and Comparative Statics

By Theorem 5.4, the optimal allocation is uniquely determined as soon as we know the

rank of every investor, as well as the thresholds Zk. By Definitions 5.2 and 5.3, both the

ranks and the thresholds are uniquely determined by the N -tuple of numbers (ai). Given

the N -tuple (ai), we denote bi = a−1
i as their reciprocals and denote by b = (bi) the

vector of these reciprocals. We denote by (Zi(b) , i = 0, · · · , N + 1) the corresponding

thresholds and by (Fi(b) , i = 1, · · · , N) the corresponding allocation. By definition (see

(11)), the optimal allocation must satisfy:

bi =
eρi u′i(c0i)

(1 − α) eρS u′S(c0S)
=

eρi u′i (w0i − Pi(Fi(b)))

(1 − α) eρS u′S

(
w0 + (1 − α)

∑
j Pj(Fj(b))

)
for all i = 1, · · · , N. This is a highly non-linear system of equations for the vector b. It is

by no means clear how to solve it analytically or even numerically and how the solution

would depend on the microeconomic characteristics of the model.

In this section we show that this N -tuple is the unique fixed point of a contraction

mapping defined on an explicitly given compact set and therefore can be easily calculated

by successive iterations.

We use the common notation b−i to denote the vector of all coordinates of b except

for bi.

Lemma 6.1 For each i = 1, · · · , N, there exists a unique, piecewise C1 function

Hi = Hi(C, b−i)

solving

Hi(C, b−i) = eρi C u′i
(
w0i − Pi

(
Fi

(
X,
(
Hi(C, b−i), b−i

))) )
. (18)

The function Hi is monotone increasing in C and b−i, and C−1Hi is decreasing in C.
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Now, we are ready to formulate the main result of this section. To this end we need

some definitions. Let

Pmax
i = w0i − vi

(
Li − e−ρi E[ui(w1i +X)]

)
be the price that the investor i will pay for the whole X,23

Cmin = (eρS u′S (w0))
−1

, Cmax =

(
(1 − α) eρS u′S

(
w0 + (1 − α)

∑
i

Pmax
i

))−1

and

βmax
i = log (Cmax e

ρi u′i (w0i − Pmax
i ))) , βmin

i = log (Cmin e
ρi u′i(w0i)) .

We denote:

Ω = ×i [β
min
i , βmax

i ] .

Also, let

‖x‖l∞ = max
i

|xi|

be the l∞-norm of a finite sequence, equal to the maximal absolute value of its elements.

The following lemma is the main technical result of this section.

Lemma 6.2 (contraction lemma) For any C > 0, the mapping GC defined via

(GC)i(d) = logHi(C, e
d−i)

23We always assume that the price Pmax
i is well defined for any investor i. That is, the initial endow-

ment w0i is sufficiently large so that vi (Li − e−ρi E[ui(w1i + X)]) is well defined. This assumption is

only necessary when dealing with utilities that are defined on a half-line. It can be relaxed at the cost

of more technicalities, and we omit it for the reader’s convenience.
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maps the compact set Ω into itself and is a strict contraction with respect to ‖ · ‖l∞ .

Consequently, there exists a unique fixed point d∗(C) ∈ Ω of this map, solving:

d∗(C) = GC(d∗(C)) .

For any d0 ∈ Ω, we have:

d∗(C) = lim
n→∞

(GC)n(d0).

The result of Lemma 6.2 is quite surprising because it holds under absolutely no

restrictions on model parameters. In particular, we do not need to impose any smallness

conditions that typically are used in economic applications of the contraction mapping

theorem. The last technical result we need is the following lemma.

Lemma 6.3 There exists a unique number C∗ ∈ (Cmin , Cmax) solving:

C =

(
(1 − α) eρS u′S

(
w0 + (1 − α)

∑
i

(
w0i − Ii(e

d∗i (C) e−ρi C−1)
)))−1

. (19)

Now we are ready to state the main result of this section.

Theorem 6.4 Let b∗(C∗) = ed
∗(C∗). The optimal allocation is given by (Fi)(b

∗(C∗)).

Theorem 6.4 provides a directly implementable algorithm for calculating the optimal

allocation: The vector d(C) can be calculated by successive iterations using Lemma 6.2,

and then C∗ can be found using any standard numerical procedure for solving (19). It is

interesting to note that the iterative re-tranching procedure of Theorem 6.4 and Lemma

6.2 has a direct real-world analog. Typically, a CDO issuer re-tranches the underlying

pool several times until he finds a tranche structure, which is better suited for the existing

investor clientele.

The characterization of the optimal allocation provided by Theorem 6.4 is perfectly

suited for studying comparative statics. We will need the following lemma.
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Lemma 6.5 (comparative statics lemma) If the right-hand sides of (18) and (19)

are monotone increasing in some parameter, then so do C∗ and d∗(C∗).

Since, by (12)-(14) and Theorem 5.4, all tranche thresholds and other characteristics

of optimal securities can be expressed in terms of ai = e−di , we can use Lemma 6.5 to

study the dependence of the optimal allocation on various model parameters. Let:

Zfull selling
def
= max{X : F (X) = X} .

By Theorem 5.4, we have that Zfull selling = ZJ+1 is positive if and only if maxi Yi > YS.

Also let:

#{senior} = #{i : Yi > YS}

be the number of investors participating in the tranches that are fully sold.

If Zfull selling = 0, we define:

Zno trade = max{x : F (x) = 0}

to be the threshold ZN of the super-senior tranche that is not sold at all.

Finally, for each investor i we define:

index(i) =


1 , if rank(i) > J

0 , if rank(i) ≤ J

.

That is, an investor’s index is one if the investor gets a part of the tranches that are fully

sold and zero otherwise.

Definition 6.6 We say that a change in the parameters of the model leads to more

selling if it leads to an increase (in the weak sense) in:
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• #{senior},

• Zfull selling,

• index(i) for each i,

and to a decrease (in the weak sense) in Zno trade.

That is, more selling implies that a larger part of X is fully sold and more investors

participate in the fully sold senior tranches.

The next proposition describes the effect of a first-order stochastic dominant (FOSD)

shift in the distribution of X, as well as the effect of changes in the issuer’s initial wealth

and discount rate on the optimal allocation.

Proposition 6.7 A decrease in the distribution of X in the FOSD sense, a decrease in

w0, and an increase in ρS leads to more selling. In particular, there exists a threshold

value for ρS such that the super-senior tranche is always sold (retained) by the issuer

with ρS above (below) this threshold,24 and similarly for w0.

The intuition behind this result is very clear: A decrease in the FOSD sense makes X

less attractive for the issuer and increases her willingness to sell, notwithstanding the fact

that the investors are willing to pay less for the tranches. The effects of decreasing w0

and increasing ρS are similar. If an issuer’s initial endowment w0 is small, the marginal

value of additional capital increases and forces the issuer to sell more. Similarly, if the

rate ρS of discounting the cash flows from X is high (equivalently, the firm has other

assets with high rates of return available for investment), the issuer’s incentive to raise

cash gets stronger, which leads to more selling.

We close this section with an analogous comparative statics result for the issuing cost

α. It turns out that the situation is more complex. The following is true:

24Here, we allow ρS to vary and keep the rest of the parameters fixed.
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Proposition 6.8 Suppose that the relative risk aversion − c u′′
S(c)

u′
S(c)

of the issuer is above

(below) 1 for all c in the attainable consumption interval [w0 , w0 + (1 − α)
∑

i P
max
i ] .

Then, an increase in the cost α leads to more (less) selling.

Thus, the effect of an increase in costs of the optimal allocation depends on the

position of the issuer’s relative risk aversion with respect to 1. If the issuer is relatively

risk tolerant (risk aversion below one), an increase in the costs will force the issuer to

retain a larger part of X because trading is not profitable enough. In contrast, if her

risk aversion is relatively high (above one), the incentive to sell X will go up, leading to

more selling.

7 CARA Investors: Tranching Is Optimal

In this section we consider the benchmark case when all investors, as well as the issuer,

have exponential (CARA) utilities25:

ui(c) = A−1
i (1 − e−Aic) , uS(c) = A−1

S (1 − e−ASc).

In this case, the optimal securities take a particularly simple form. Since for CARA

utilities absolute risk tolerance is constant, Proposition 5.5 yields the following:

Proposition 7.1 For each i, the investor i gets a portfolio of tranches. Namely, for

rank(i) ≥ J + 1,

Fi =

rank(i)∑
k=0

κik Tranchek,

25This assumption is often used in security design literature. See, for example, Acharya and Bisin

(2006).
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with

κik =


A−1

i
PN

j:rank(j)≥k A−1
j

, for k ≥ J + 1

A−1
i

A−1
S +

PN
j:rank(j)≥k+1 A−1

j

, for k ≤ J

.

For rank(i) ≤ J,

Fi =

rank(i)−1∑
k=0

κi k Tranchek,

with

κi k =
A−1

i

A−1
S +

∑
j:rank(j)≥k+1 A

−1
j

.

The result of Proposition 7.1 is very important in view of its relation to the securiti-

zation practice observed in the financial industry. Namely, if X is a pool of morgages,

bonds, or commercial loans held by a bank, the bank often generates a CDO by forming

multiple tranches from the pool of the assets and sells portfolios of such tranches to

investors. Proposition 7.1 shows that this often-observed securitization practice has a

rational explanation if we adopt the hypothesis that economic agents participating in

the CDO markets have CARA preferences. This is not an unnatural assumption. For

example, Gollier (2004) notes that the behavior of economic agents is consistent with

CARA preferences when the wealth level is high. Thus, CARA assumption should work

well if the wealth of the agents participating in the CDO market is high relative to the

size of the pool X.

We now discuss the structure of real-world CDOs in greater detail. There are two

types of CDO transactions: true-sale transactions and synthetic transactions. In a true-

sale transaction, the underlying credit exposures are taken on using physical assets (e.g.,

bonds or mortgages.) The originator of a true sale transaction always fully sells the

senior tranche (Tranche(0, b) for some b > 0 in our notation) and never fully sells the

junior tranche. The quantity

X̄ − b
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is usually referred to as the first loss position (FLP). It absorbs all default losses up

to a limit, equal to its volume X̄ − b. The commonly accepted intuition behind this

behavior is that, in the presence of asymmetric information, the most junior tranche is

the most information-sensitive. Therefore, the issuer retains this tranche (or a part of it)

to reduce investor skepticism, driven by information asymmetries. Proposition 7.1 offers

an alternative explanation for this phenomenon, based on the investors’ risk aversion.

For a synthetic CDO transaction, the underlying credit exposures are taken on using

a credit default swap rather than by having a vehicle buy physical assets. A synthetic

CDO is always characterized by the presence of the so-called second loss position (SLP)

and the third loss position (TLP). Namely, for a given single-tranche CDO (Tranche(a, b)

is our notation26), the SLP

X̄ − a

ensures that the investor bears only part (equal to b − a) of the default losses beyond

the FLP. The most puzzling property of all synthetic CDO transactions is the presence

of the third loss position (TLP). Namely, the issuer always retains the super-senior

Tranche(0, c), in which case c is the TLP. This phenomenon stands in stark contrast to

the predictions of most existing models of optimal security design based on asymmetric

information (see, e.g., DeMarzo and Duffie (1999), DeMarzo (2005)) where it is optimal

to sell the super-senior tranche because it is the least information-sensitive.

Theorem 5.4 and Proposition 7.1 provide a natural theoretical explanation of this

phenomenon: When the issuer is risk averse and the MMRIS of all investors are small

relative to that of the issuer, the issuer will always retain the super-senior tranche.

Furthermore, our model generates a qualitative behavior of the tranche thresholds, con-

sistent with that observed in the data. We appeal to Franke, Herrmann, and Weber

(2007), where they study numerous relations between the properties of the underlying

26In a real-world transaction, this tranche may consist of multiple component tranches.
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pool, the properties of the issuer, and the structure of CDO transactions. Here, we

formulate and provide theoretical justification for three of them:

(1) Transactions with a TLP are preferred to true-sale transactions for asset pools with

high quality;

(2) In a transaction with a TLP, the size of the non-securitized super-senior tranche

(TLP) increases with the quality of the asset pool; and

(3) Transactions with a TLP (without a TLP) are preferably used by banks with a

strong (weak) rating.

To study (1) and (2) in our stylized theoretical setup, we say that a pool X1 is

of higher quality than X2 if the distribution of X1 obtains as a FOSD shift in the

distribution of X2. By Proposition 6.7, a sufficiently strong increase in the pool quality

induces the issuer to retain the super-senior tranche, and she will prefer a synthetic

transaction in agreement with the stylized fact (1). Furthermore, by Proposition 6.7, the

TLP= Zno trade is monotone increasing in the quality of the pool, in complete agreement

with (2).

A bank with a weak rating faces a higher interest rate on borrowing. Therefore,

the discount rate ρS for such a bank will be higher, driven by the stronger incentive to

raise capital. Similarly, a bank also has a weak rating if its initial capital w0 is small.

Stylized fact (3) follows directly from Proposition 6.7. We summarize these findings in

the following proposition.

Proposition 7.2 Stylized facts (1)-(3) hold true.

Note that we could also use the comparative statics results of Proposition 6.8 to make

testable empirical predictions. With CARA utilities, relative risk aversion of the issuer

is given by cAS. If we adopt the hypothesis that the issuer’s capital is typically large and
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absolute risk aversion AS is not too small, we should observe a smaller TLP in markets

with larger proportional issuing costs.

Another interesting finding of Franke, Herrmann, and Weber (2009) is that the FLP

decreases with the quality of the asset pool.27 When the issuer is risk averse, the FLP

is given by X̄ − Z1. That is, Z1 must be monotone increasing in the pool quality. Even

though we have not proven this finding theoretically, numerical simulations suggest that

it is often true.

We now use the profiles in Table 1 to run numerical computation.

We first consider the case when X either takes value 1 with probability 1−δ or a ran-

dom value, uniformly distributed on [0, 1] with probability δ. If X is a pool of bonds with

total face value 1, then δ can be naturally interpreted as the default probability. Figure

1(a) shows a plot of the tranche thresholds Z1 , · · · , Z5 against the default probability

δ.

Then, we fix the default probability δ = 0.5 and vary the distribution of the recovery

rate. Conditioned on the default event, we allow X to be distributed with the density

nxn−1 on [0, 1] for some n > 0. Clearly, increasing n makes the distribution of X

positively skewed and improves the pool quality in the FOSD sense. Figure 1(b) shows

a plot of the tranche thresholds Z1 , · · · , Z5 against the skewness parameter n.

To illustrate the effect of ρS on the optimal allocation, we fix δ = 0.5 and assume

as above that X is uniformly distributed on [0, 1]. Figure 2 shows a plot of the tranche

thresholds Z1 , · · · , Z5 against the discount rate ρS of the issuer. Figures 1(a), 1(b) and

2 clearly show that the TLP (threshold Z5 in our setting) is monotone increasing in the

quality of the pool and decreasing in the issuer’s discount rate ρS while the FLP (X̄−Z1

in our setting) is monotone in the opposite directions with respect to these parameters,

27Other empirical findings of Franke, Herrmann, and Weber (2009) are related to information asym-

metries and cannot be tested in our model.

40



Table 1: Agent Profiles with Risk-Averse Issuer

Agent ρ A w0 w1

Issuer 0.08 1 0 0
Investor 1 0.01 0.3 0 0
Investor 2 0.04 0.4 0 0
Investor 3 0.06 0.6 0 0
Investor 4 0.08 0.1 0 0
Investor 5 0.1 0.1 0 0

in complete agreement with the above mentioned stylized facts.

We complete this section with two important results that hold only when investors

have CARA preferences.

In general, the ranks that the issuer assigns to the investors may depend in a non-

trivial way on investors’ preferences and endowments. However, it turns out that, when

all investors have CARA preferences, ranks can be characterized explicitly. The following

is true:

Proposition 7.3 The ranks of the investors follow the order of their pre-trade MRIS.

That is rank(i) > rank(j) if and only if

e−ρi u′i(w1i)

u′i(w0i)
>

e−ρj u′j(w1j)

u′j(w0j)
.

Suppose for simplicity that the investors’ endowments satisfy w0i = w1i. In this case,

Proposition 7.3 implies that the rank of an investor is determined solely by his discount

rate ρi and is independent of his risk aversion Ai. The reason is that, when an investor’s

risk aversion is constant, the risk premium per unit of risk that the investor is charging

for holding a risky cash flow is independent of the level of X. By Proposition 7.1, for

any investor i, the issuer optimally chooses the fraction of the total cash flow F (X) that

investor i gets to be proportional to his risk tolerance Ai, thereby equalizing marginal
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Figure 1: The Effect of Asset Pool Quality
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Figure 2: The Effect of Issuer’s Discount Rate

risk premia across the investors. Therefore, only discount rates ρi matter for ranking.

In particular, if several investors have identical pre-trade MRIS, the tranches they will

participate in will be the same, and the portfolios of tranches they get will be identical,

up to a constant multiple. This leads to the following interesting aggregation result.

Denote by A−1
B the sum of investors’ risk tolerances:

A−1
B =

N∑
j=1

A−1
j . (20)

The following is true:

Proposition 7.4 Suppose that w0i = w1i
28 for all i, and ρi = ρB is independent of i.

28Due to translation invariance of CARA preferences, optimal allocation depends only on the differ-

ences w1i − w0i and w1 − w0 of endowments at times zero and one.
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Then, the risk-sharing is linear:

Fi(x) =
A−1

i

A−1
B

F (x)

and F (x) coincides with the optimal security that the issuer would sell to a single repre-

sentative investor with risk aversion AB.

There exist constants:

Kmax > Kmid > Kmin

such that the following is true:

• If

ρS − ρB > Kmax,

then full selling is optimal, F (X) = X;

• If

Kmax > ρS − ρB > Kmid,

then F (X) is a combination of a standard debt and a fraction of the junior equity

tranche,

F (X) = F (X, a) = min(X , Z(a)) +
A−1

B

A−1
S + A−1

B

max(X − Z(a) , 0). (21)

• If

Kmid > ρS − ρB > Kmin,

then the issuer retains the senior tranche and sells a fraction of the junior equity

tranche,

F (X) = F (X, a) =
A−1

B

A−1
S + A−1

B

max(X − Z(a) , 0). (22)
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• If

Kmin > ρS − ρB ,

then there is no trade, F (X) = Fi(X) = 0 for all i.

Furthermore,

Z(a) =


A−1

B (log a+ ASw1) in case (2)

−A−1
S log a in case (3)

,

and a is the unique solution to

a = eρS−ρB e−ASw0
(
1 + e−ρB E[1 − e−AB F (X,a)]

)−(AB+AS)/AB
. (23)

Proposition 7.4 shows that, when all investors have CARA utilities with identical

endowments and discount rates, the allocation is characterized by the presence of a

representative investor such that the total optimal security F (x) coincides with that in

an artificial market, populated by this single representative investor. This phenomenon

is known as aggregation and also arises in the Sharpe-Lintner capital asset pricing model

(CAPM) (see, e.g., Sharpe (1964)) as well as in general complete market Walrasian

equilibrium allocations. Indeed, by the First Welfare Theorem, such allocations are

always Pareto-efficient and can therefore be characterized by the presence of a single

representative investor. In contrast, in our model, aggregation only takes place under

very special conditions, such as those of Proposition 7.4.

8 Risk-Neutral Issuer

Risk neutrality of the issuer is a common assumption in the literature on security design.

It is usually made in order to focus on liquidity motives as opposed to risk-sharing motives
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for securitization. In fact, many motivating examples involve the sale of securities by

previously incorporated and publicly traded firms. For such cases, the firm does not

come directly equipped with an attitude toward risk. With liquid capital markets, for

example, Modigliani and Miller (1958) and Stiglitz (1974) showed that a publicly traded

firm is indifferent to certain kinds of financial risk. In this section we present a detailed

study of optimal securitization when the issuer is risk neutral.

We start with the following proposition:

Proposition 8.1 If the issuer is risk neutral, then the full optimal security F (X) is a

standard debt:

F (X) = Tranche(0, ZJ+1).

Furthermore, there is trade (i.e., ZJ+1 > 0) if and only if:

e−ρS ≤ max
i

e−ρi u′i(w1i)

u′i(w0i)
.

By Proposition 5.5, the slope of Fi(X) is equal to zero for X ≥ ZJ+1 when the issuer

is risk neutral because her risk tolerance is infinite and so she will always either fully sell

all the risks or fully bear them and will never participate in a non-trivial risk sharing for

a given level of X.

Furthermore, the independence of the MRIS of a risk-neutral issuer of her consump-

tion makes it possible to study the dependence of optimal allocation on the characteristics

of the investors. Since, by Lemma 6.3, the factor C in this case equals e−ρS , a change

in the characteristics of the investors does not have any effect on C. Therefore, to apply

Lemma 6.5, it suffices to establish the required monotonicity in (18). The following is

true:

Proposition 8.2 If the issuer is risk neutral, then adding an investor to the population

of investors and/or increasing the initial endowment w0i of some investor i always leads
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Table 2: Agent Profiles with Risk-Neutral Issuer

Agent ρ A w0 w1

Issuer 0.08 0 0 0
Investor 1 0.01 0.1 0 0
Investor 2 0.03 0.3 0 0
Investor 3 0.04 0.2 0 0
Investor 4 0.05 0.5 0 0
Investor 5 0.065 0.4 0 0

to more selling.29

Clearly, introducing a new investor has a positive effect for the issuer: When there are

more investors, the issuer’s opportunities are better. In particular, the issuer optimally

increases Zfull selling = ZJ+1 in response to the presence of a new investor. Similarly, an

increase in the investor’s initial endowment increases his willingness to buy in order to

reallocate his wealth between time periods.

We use the profile in Table 2 to illustrate the result numerically. Figure 3 and 4 show

the optimal security structure as we increase the number of investors from 2 to 5.

We complete this section with a very intuitive result, illustrating the effect of changes

in investors’ discount rates on optimal allocation. To state the result, we need the

following definition:

Definition 8.3 We say that the size of X is mild for investor i if

(ui(w0i) − ui(c))
1

Ri(c)
≤ u′i(c) (24)

for all c in the attainable consumption interval,

c ∈ [w0i − Pmax
i , w0i] .

29See Definition 6.6.
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Condition (24) has a clear economic meaning: Whatever investor i buys, his total

utility loss, normalized by the risk tolerance, will be smaller than the marginal loss

u′i(c). Clearly, this condition requires that the size of X not be too large relative to the

investor’s wealth. The following is true:

Proposition 8.4 Suppose that the issuer is risk neutral and that the size of X is mild

for investor i. Then, a decrease in ρi leads to more selling.

The intuition behind Proposition 8.4 is completely analogous to that described above:

If the discount rate of an investor i decreases, his valuation of future cash flows increases.

This creates better opportunities for the issuer and induces her to sell more. The re-

quirement that the size of X be mild is not too restrictive. For example, the following

is true:30

Lemma 8.5 If investor i has a CARA utility, then the size of X is always mild for him.

If investor i has a constant relative risk aversion utility ui(c) = (c1−γ − 1)/(1 − γ) ,

then the size of X is mild for him if:



e−ρi E

[(
w1i+X

w0i

)1−γ

−
(

w1i

w0i

)1−γ
]

≤ 1 − γ , γ < 1

e−ρi E
[
log
(

w1i+X
w1i

) ]
≤ 1 , γ = 1

e−ρi E

[(
w1i

w0i

)1−γ

−
(

w1i+X
w0i

)1−γ
]

≤ γ − 1 , γ > 1

In particular, the size of X is always mild for him if either w1i or his discount rate ρi is

sufficiently large.

Finally, we note that the results of Propositions 8.2 and 8.4 do not generally hold

when the issuer is risk averse. The reason is that, when the issuer is risk averse, the

30The proof follows by direct calculation.
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marginal value of an additional unit of consumption at time zero decreases when there

are more opportunities to raise cash. This effect may overcome the incentive to sell

a larger part of X and drive selling down. We again use the profiles in Table 1 to

numerically illustrate this point in Figure 5. As we can see from the plot, the decrease

of the first investor’s discount rate does not necessarily lead to more selling because the

super-senior tranche is not sold and Zno trade decreases as ρ1 increases over the interval

of [0.04, 0.05].
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Figure 5: A Counter Example

9 Fixed Costs of Issuing Securities

In this section we discuss the effects of fixed securitization costs on the optimal allocation.

Namely, we assume that issuing any security costs a fixed amount C 31 in addition to the

31This is also the case studied by Allen and Gale (1989).
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already included proportional costs. In this case, the optimal securitization problem of

the issuer contains a discrete component. The issuer has to decide how many securities

she will issue and which investors she will sell them to. Then, given the chosen investors

and the number K of the securities the issuer decides to issue, the problem reduces to the

one studied in the previous sections, but with the initial endowment of the issuer given

by w0 − KC. We summarize the basic implications of costs in the following proposition:

Proposition 9.1 We have:

(1) The optimal number K = K(C) of issued securities is monotone decreasing in

cost C;

(2) There exist thresholds

0 = CN+1 ≤ CN ≤ CN−1 ≤ · · · ≤ C1 ≤ C0 = 0,

such that it is optimal to issue K securities if C ∈ (CK+1, CK) ;

(3) If the issuer is risk neutral and a decrease in the cost does not force the issuer to

drop any investors, then this decrease in cost C leads to more selling;

(4) If the issuer is risk averse, then for C ∈ (CK+1, CK), an increase in C leads to

more selling if this increase does not lead to changing investors.

Items (1) and (2) follow directly from the definition of the problem: The higher is the

cost of issuing securities, the less is the incentive for the issuer to issue. To explain the

meaning of items (3) and (4), we note that a decrease in the cost of issuing may force the

issuer to choose another group of investors rather than adding new investors to already

existing ones. For example, suppose that the cost is so high that the issuer only sells a

security to investor 1. If the cost decreases, it may be optimal for the investor to trade
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only with investors 2 and 3 rather than with 1 and 2 or 1 and 3. In this case, investor 1

is dropped. But if nobody gets dropped, a decrease in the cost simply induces the issuer

to add new investors to already existing ones, which, by Proposition 8.2, always leads to

more selling and (3) follows. If the issuer is risk averse, an increase in the cost reduces

her initial consumption and therefore increases her incentive to raise capital. As long as

the set of investors to which she is selling does not change, (4) immediately follows from

Proposition 6.7.

Table 3 shows how the optimal number of investors depends on the cost C. The

profiles of the issuer and the investors are given in Table 1 and the proportional cost

level is set to be 5%.

Table 3: Optimal Selection of Investors with Fixed and Proportional Cost

C in % 0.01 0.1 0.5 2 13
Investors 1,2,3,4 1,2,4 1,4 4 –
Issuer’s Expected Utility 0.599129 0.596688 0.589469 0.57357 0.49502

We see here that a surprising phenomenon occurs: Even though investor 4 has the

highest discount rate and therefore the lowest rank among the first four investors (by

Proposition 7.3), the issuer always sells a security to him because of his very low risk

aversion. In contrast, even though investors 1, 2, 3 have lower discount rates, they get

dropped when the cost C increases because of their high risk aversion. This phenomenon

illustrates that, when the issuing costs are high, the risk premia that the investors are

charging play a crucial role in the issuer’s decision on which investors to choose.

10 Conclusions

We solve the problem of optimal securitization for an issuer facing multiple investors

with arbitrary heterogeneous risk attitudes, discount rates, and endowments, and with-

out asymmetric information. We show that optimal securities can be characterized as
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portfolios of multiple non-linear tranches and have a prioritized structure: The issuer op-

timally assigns ranks to investors depending on their MMRIS, and based on these ranks,

the issuer determines the optimal tranche thresholds. She then sells either the super-

senior or the second senior tranche to the investor of highest rank, and then gradually

sells the mezzanine and junior tranches to investors with lower ranks, so that every sub-

sequent tranche is shared by multiple investors in a Pareto-efficient way. In particular,

the junior (equity) tranche is never fully sold. 32

When the issuer and all investors have exponential (CARA) utilities, optimal secu-

rities are given by portfolios of standard linear tranches (CDOs). In particular, when

the issuer is risk averse and her discount rate is not too large, she optimally retains

the super-senior tranche and sells portfolios of fractions of senior and junior tranches to

the investors. The model generates theoretical predictions about the dependence of the

non-securitized super-senior tranche (TLP) on underlying microeconomic characteristics

that are confirmed by recent empirical findings.

We conclude that risk-sharing motives and the risk aversion of both the issuer and the

investors are driving forces for securitization that are at least as important as asymmetric

information. To the best of our knowledge, this is the first model in the literature that

explains the appearance of multiple tranches in the CDO design and the relation of the

tranche thresholds to microeconomic characteristics. We believe that these results are of

both theoretical and practical importance and can be used by banks and intermediaries

to improve securitization.

Our model and algorithm could also be used to compute CDO-squared. For example,

the original investor himself could have specific knowledge about potential investors

he represents (their risk attitudes and discount rates). He could then re-tranche the

32Unless the junior (equity) tranche collaps to a single point and the MMRIS of all investors are larger

than that of the issuer.
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portfolio that he has purchased from the original issuer and sell to his clients. Another

example would be the case when the issuer re-tranches an unsold tranche and sells to

new investors.

Finally, we note that the model could also be viewed as surplus extraction through

price discrimination when the issuer has complete information. It would be interesting

to extend our model to the case when the issuer has incomplete information about in-

vestor types, as in the model of Cremer and McLean (1985). It would also be interesting

to extend our model to a dynamic, multi-period setting and allow for asymmetric in-

formation. Our techniques for analyzing constrained efficient allocations could also be

applied to models outside of security design, such as, for example, equilibrium models

with participation constraints. See Alvarez and Jermann (2000,2001). We leave these

for future research.

Appendix

A One Investor

Proof of Theorem 4.1. The first-order Kuhn-Tucker conditions are

− e−ρS u′S(w1 +X − F (X))

+ (1−α)u′S(w0 + (1−α)P ) v′B
(
LB − e−ρB E[uB(w1B + F )]

)
e−ρB u′B(w1B + F ) = 0

(25)
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if the constraints 0 ≤ F (X) ≤ X are not binding; the form

− e−ρS u′S(w1 +X − F (X))

+ (1 − α)u′S(w0 + P ) v′B
(
LB − e−ρB E[uB(w1B + F )]

)
e−ρB u′B(w1B + F ) > 0

(26)

with F (X) = X if the constraint F (X) = X is binding; and the form

− e−ρS u′S(w1 +X − F (X))

+ (1 − α)u′S(w0 + P ) v′B
(
LB − e−ρB E[uB(w1B + F )]

)
e−ρB u′B(w1B + F ) < 0

(27)

with F (X) = 0 if the constraint F (X) = 0 is binding.

Since the maximization problem for the issuer is strictly concave, to prove the theorem

it suffices to check that the first-order conditions, (25) through (27), hold true.33 We

consider all four cases identified in the theorem.

(1) and (4). We only prove (1). Case (4) is analogous. To show that F (X) = X, we

need to show that the constraint is binding. That is, (26) holds with F (X) = X. Using

the identity

v′B(x) = 1/u′B(vB(x)), (28)

we get

−e−ρS u′S(w1) + (1 − α)
u′S(w0 + (1 − α)Pmax)

u′B(w0B − Pmax)
e−ρB u′B(w1B + X) > 0

33Even though the problem is infinite dimensional, sufficiency of the Kuhn-Tucker conditions can be

verified directly by standard methods due to the strict concavity of the problem. See, e.g., Seierstad

and Sydsaeter (1977) and Mitter (2008).
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for all X ∈ [0, X̄]. Since u′B is decreasing, it suffices to check it for X = X̄. This is

equivalent to the condition ρS − ρB > Kmax.

(2) and (3). For simplicity, we only prove (3). Case (2) is analogous. First, we

need to show that the equation for a does have a solution. To this end, by the Brower

fixed-point theorem, it suffices to show that the right-hand side of (6) maps a compact

interval into itself. This is clear because:

uB(w1B) ≤ E[uB(w1B + Fa(X))] ≤ E[uB(w1B +X)] .

Now, we claim that the right-hand side of (6) is monotone decreasing in a. Indeed, to

prove it, it suffices to show that

E[uB(w1B + Fa(X))]

is monotone increasing in a, since the numerator is decreasing in E[uB(w1B + Fa(X))]

and the denominator is decreasing in it. Differentiating (4) with respect to a, we get:

∂g

∂a
= − u′B(w1B + g)

a u′′B(w1B + g) + u′′S(w1 + x− g)
,
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and therefore g is monotone increasing in a. Also, g(a, Z(a), w1B) = 0. Therefore,

∂

∂a
(E[uB(w1B + Fa(X))])

=
∂

∂a

(
uB(w1B)

∫ Z(a)

0

p(x)dx +

∫ X̄

Z(a)

uB(w1B + g(a,X)) p(x) dx

)

= uB(w1B)
∂

∂a

∫ Z(a)

0

p(x)dx − uB(w1B)
∂

∂a

∫ Z(a)

0

p(x)dx

+

∫ X̄

Z(a)

u′B(w1B + g(a, x))
∂g

∂a
(a, x) p(x) dx

=

∫ X̄

Z(a)

u′B(w1B + g(a, x))
∂g

∂a
(a, x) p(x) dx > 0,

(29)

and the claim follows.

B Kuhn-Tucker First-Order Conditions for Multiple Investors

By strict concavity, an allocation is optimal if and only if it satisfies the first-order

Kuhn-Tucker conditions. They are:

− e−ρS u′S(w1 +X − F (X))

+ (1−α)u′S

(
w0 + (1 − α)

∑
i

Pi

)
v′i
(
Li − e−ρi E[ui(w1i + Fi)]

)
e−ρi u′i(w1i +Fi) = 0

(30)

if the constraints Fi ≥ 0 and
∑

j Fj ≤ X are not binding, and

− e−ρS u′S(w1 +X − F (X))

+ (1−α)u′S

(
w0 + (1 − α)

∑
i

Pi

)
v′i
(
Li − e−ρi E[ui(w1i + Fi)]

)
e−ρi u′i(w1i +Fi) < 0

(31)

58



if the constraint Fi ≥ 0 is binding but the constraint
∑

j Fj ≤ X is not binding.

Finally, if the constraint
∑

j Fj ≤ X is binding, there will be a Lagrange multiplier

ν(X) for this constraint, and the first-order condition will be

− e−ρS u′S(w1 +X − F (X))

+ (1 − α)u′S

(
w0 + (1 − α)

∑
i

Pi

)
v′i
(
Li − e−ρi E[ui(w1i + Fi)]

)
e−ρi u′i(w1i + Fi)

= ν(X) > 0 (32)

if the constraint Fi ≥ 0 is not binding, and

− e−ρS u′S(w1 +X − F (X))

+ (1 − α)u′S

(
w0 + (1 − α)

∑
i

Pi

)
v′i
(
Li − e−ρi E[ui(w1i + Fi)]

)
e−ρi u′i(w1i + Fi)

< ν(X) (33)

if the constraint Fi ≥ 0 is binding. By (28),

v′i
(
Li − e−ρi E[ui(w1i + Fi)]

)
=

1

u′i(w0i − Pi)
=

1

u′i(c0i)
,

and therefore, by (11),

ai = eρS−ρi
(1 − α)u′S (w0 + (1 − α)

∑
i Pi)

u′i (vi (Li − e−ρi E[ui(w1i + Fi)]))

= eρS−ρi (1 − α)u′S

(
w0 + (1 − α)

∑
i

Pi

)
v′i
(
Li − e−ρi E[ui(w1i + Fi)]

)
.

(34)

59



Thus, we can rewrite (30) through (33) in the form:

ai u
′
i(w1i + Fi(X)) = u′S(w1 +X − F (X)) (35)

when none of the constraints is binding, and

ai u
′
i(w1i + Fi(X)) < u′S(w1 +X − F (X)) (36)

when the constraint Fi ≥ 0 is binding but the constraint
∑

j Fj ≤ X is not.

When the constraint
∑

j Fj(X) ≤ X is binding, we have
∑

j Fj(X) = X. If we set:

λ(X)
def
= eρS ν(X) + u′S(w1),

then, (32) and (33) take the form

ai u
′
i(w1i + Fi(X)) = λ(X) > u′S(w1) (37)

when Fi ≥ 0 is not binding and

ai u
′
i(w1i + Fi(X)) < λ(X) (38)

when it is binding.

By abuse of notation, we from now on reorder the investors in the increasing order

of their rank. In other words, investor i means from now on the investor whose rank is

equal to i.

By the uniqueness of optimal allocation, it suffices to show that the allocation, de-

scribed in Proposition 5.4 and Theorem 5.5, indeed satisfies the first-order conditions

(35) through (38). This is done in subsequent lemmas.
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Lemma B.1 Let k ≥ J + 1. Then, for all X ∈ [Zk+1, Zk] (= Tranchek) , the constraint∑
j Fj(X) ≤ X is binding and the constraint Fj(x) ≥ 0 is binding for all j < k. The

optimal allocation for X ∈ Tranchek is uniquely determined via

Fj(X) =


Ij(λk(X) a−1

j ) − w1j , j ≥ k

0 , j < k

. (39)

Here, λk(X) is the unique solution to

X =
∑
j ≥ k

(
Ij(λk(X) a−1

j ) − w1j

)
. (40)

The slope of Fj(X), j ≥ k satisfies

d

dx
Fj(X) =

Rj(c1j)∑
i≥ k Ri(c1i)

.

Proof. By construction, the conjectured optimal allocation satisfies

∑
j

Fj(X) = X

for all X ≤ ZJ+1. Thus, we need to verify that (37) and (38) hold in this case. Here,

the connection between µk(X) from Proposition 5.4 and λk(X) is given by:

µk(X) =
λk(X) e−ρS

u′S(c0S)
.

By (39) and (40), Fi(X) satisfies

ai u
′
i(w1i + Fi(X)) = λk(X) and

∑
i

Fi(X) = X,
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and it remains to check that equation (40) has a solution λk(X) such that

λk(X) ≥ u′S(w1) (41)

(constraint
∑

j Fj ≤ X is binding) and

Fj = Ij(λk(X) a−1
j ) − w1j ≥ 0 for all j ≥ k (42)

(constraint Fj ≥ 0 is not binding for j ≥ k) and (38) holds, that is,

aj u
′
j(w1j) < λk(X) (43)

for all j < k. First, let k > J + 1. Recall now that

Zk+1 =
N∑

i=k+1

(Ii(a
−1
i ak u

′
k(w1 k)) − w1i) =

N∑
i=k

(Ii(a
−1
i ak u

′
k(w1 k)) − w1i),

and therefore X ∈ [Zk+1, Zk] if and only if

N∑
i=k

(Ii(a
−1
i ak u

′
k(w1 k)) − w1i) ≤ X ≤

N∑
i=k

(Ii(a
−1
i ak−1 u

′
k−1(w1 k−1)) − w1i) .

Recalling that

X =
N∑

i = k

(
Ii
(
a−1

i λk(X)
)
− w1i

)
, (44)

we get that

λk(X) ∈ [ak−1 u
′
k−1(w1 k−1) , ak u

′
k(w1 k)]. (45)

If k = J + 1, the same argument implies that

λJ+1(X) ∈ [u′S(w1) , aJ+1 u
′
J+1(w1 J+1)] . (46)
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Recall that the investors are ordered in such a way that the sequence

Yi =
e−ρi u′i(w1i)

u′i(c0i)
=

ai u
′
i(w1i) e

−ρS

u′S(c0S)

is monotone decreasing in i, and the inequality

Yi > YS

only holds true if i ≥ J + 1. Consequently,

aN u
′
N(w1N) ≥ · · · ≥ aJ+1 u

′
J+1(w1 J+1) ≥ u′S(w1) ≥ aJ u

′
J(w1J) ≥ · · · ≥ a1 u

′
1(w11) .

(47)

Inequalities (45), (46), and (47) immediately yield (41) and (43). Finally, for j ≥ k,

aj u
′
j(w1j) ≥ ak u

′
k(w1k) ⇔ a−1

j ≤ u′j(w1j) (ak u
′
k(w1k))

−1

and, using that λk(X) ≤ ak u
′
k(w1k) , we get

Fj = Ij(λk(X) a−1
j ) − w1j ≥ Ij(ak u

′
k(w1k)u

′
j(w1j) (ak u

′
k(w1k))

−1) − w1j = 0,

and (42) follows.

It remains to prove the identity for the derivative. Differentiating (39), we get

F ′
j(X) = (u′′j (c1j))

−1 a−1
j λ′k(X),

and, differentiating (40), we get

λ′k(X) =
1∑

i≥ k I
′
i a

−1
i

.
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Differentiating u′i(I
′
i(z)) = z at z = a−1

i λk(X), we get

(u′′i (c1i))
−1 = I ′i(a

−1
i λk(X)) .

Thus,

F ′
j(X) =

(u′′j (c1j))
−1 a−1

j∑
i≥k I

′
i a

−1
i

=
(u′′j (c1j))

−1 a−1
j∑

i≥k (u′′i (c1i))−1 a−1
i

=
(u′′j (c1j))

−1 λk(X) a−1
j∑

i≥k (u′′i (c1i))−1 λk(X) a−1
i

=
(u′′j (c1j))

−1 u′j(c1j)∑
i≥k (u′′i (c1i))−1 u′i(c1i)

,

(48)

which is what had to be proved.

It remains to cover the case when the constraint
∑

i Fi(X) ≤ X is not binding. This

is done in the following lemma.

Lemma B.2 Let k ≤ J. Then, for all X ∈ [Zk+1, Zk] (= Tranchek) , the constraint∑
j Fj(X) ≤ X is not binding, and the constraint Fj(x) ≥ 0 is binding for all j ≤ k.

The optimal allocation for X ∈ Tranchek is uniquely determined via

Fj(X) =


Ij(u

′
S(w1 +X − F (X)) a−1

j ) − w1j , j > k

0 , j ≤ k .

(49)

Here, F (X) is the unique solution to:

F (X) −
∑

j ≥ k+1

(
Ij(u

′
S(w1 +X − F (X)) a−1

j ) − w1j

)
= 0. (50)

The slope of Fj(X), j ≥ k + 1 satisfies

d

dx
Fj(X) =

Rj(c1j)

RS(c1S) +
∑

i>k Ri(c1i)
.
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Proof. We need to show that the allocation (49) and (50) satisfy the Kuhn-Tucker

conditions:

ai u
′
i(w1i + Fi) = u′S(w1 +X − F (X)),

with Fi ≥ 0 for all i > k and

ai u
′
i(w1i) − u′S(w1 +X − F (X)) < 0

for all i ≤ k.

For simplicity let k < J. By assumption, X ∈ [Zk+1 , Zk]; that is,

IS(ak u
′
k(w1k)) − w1 +

∑
i :≥k+1

(
Ii
(
a−1

i ak u
′
k(w1k)

)
− w1i

)
> X > IS(ak+1 u

′
k+1(w1 k+1)) − w1 +

∑
i :≥k+1

(
Ii
(
a−1

i ak+1 u
′
k+1(w1k)

)
− w1i

)
.

(51)

We show that the unique solution F to (50) satisfies

w1 + X − IS(ak u
′
k(w1 k)) ≤ F ≤ w1 + X − IS(ak+1 u

′
k+1(w1 k+1)). (52)

Indeed,

w1 + X − IS(ak+1 u
′
k+1(w1 k+1))

−
∑

j ≥ k+1

(
Ij(u

′
S(w1 +X − (w1 + X − IS(ak+1 u

′
k+1(w1 k+1)))) a

−1
j ) − w1j

)
= X − Zk+1 ≥ 0, (53)
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and, similarly,

w1 + X − IS(ak u
′
k(w1 k))

−
∑

j ≥ k+1

(
Ij(u

′
S(w1 +X − (w1 + X − IS(ak u

′
k(w1 k)))) a

−1
j ) − w1j

)
= X − Zk ≤ 0. (54)

Consequently, by continuity and monotonicity, the right-hand side of (50) crosses zero

at a single point F , satisfying (52). Hence, for j ≥ k + 1, by (47), we get:

Fj(X) = Ij(u
′
S(w1 +X − F (X)) a−1

j ) − w1j

≥ Ij(ak+1 u
′
k+1(w1 k+1) a

−1
j ) − w1j ≥ Ij(aj u

′
j(w1 j) a

−1
j ) − w1j = 0. (55)

It remains to be shown that the constraint Fj(X) ≥ 0 is binding for j ≤ k. By (52) and

(47),

aj u
′
j(w1j) − u′S(w1 +X − F (X)) ≤ aj u

′
j(w1j) − ak u

′
k(w1k) ≤ 0,

and the claim follows.

To complete the proof of Theorem 5.4, we only need to show that there is no trade

if and only if (15) is violated. That is, the allocation Fi = 0, i = 1, · · · , N satisfies the

first-order Kuhn-Tucker conditions if and only if (15) does not hold. Since in this case

Yi and YS coincide with the pre-trade MRIS, we need to show that

e−ρi u′i(w1i)

u′i(w0i)
≤ e−ρS u′S(w1 + X)

u′S(w0)

for all i = 1 , · · · , N and all X ∈ [0, X̄]. Since u′S(c) is monotone decreasing in c, this
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holds if and only if

max
i

e−ρi u′i(w1i)

u′i(w0i)
≤ e−ρS u′S(w1 + X̄)

u′S(w0)
,

and the claim follows.

C Contraction Mapping

We prove here the following extended version of Lemma 6.1.

For each i = 1 , · · · , N , let:

Ω−i def
= ×j 6=i [β

min
i , βmax

i ] .

Lemma C.1 Fix a constant C > 0 and let

Hi(C, b−i)

be the unique solution to

Hi(C, b−i) − eρi C u′i
(
vi

(
Li − e−ρiE[ui(w1i + Fi(X, (Hi(C, b−i), b−i)))]

))
= 0 .

Then, Hi is monotone increasing in C ∈ [Cmin , Cmax] and b−i ∈ eΩ
−i

and takes values

in [eβmin
i , eβmax

i ]. Furthermore, there exists an η < 1 such that

∑
j 6=i

bj
∂Hi

∂bj
≤ η Hi

for all b−i ∈ Ω−i except for points in a finite union of hyperplanes, for which the deriva-

tives do not exist.
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Proof of Lemma 6.1. Consider the function:

ψi(y , b−i , C)
def
= eρi C u′i

(
vi

(
Li − e−ρiE[ui(w1i + Fi(X, (y, b−i)))]

))
.

Then, the defining equation for Hi can be rewritten as

Hi = ψi(Hi , b−i , C) .

To complete the proof of the first part of the lemma, it remains to be shown that (1) ψi is

monotone decreasing in y; (2) for each fixed C ∈ [Cmin , Cmax] and each fixed b−i, it maps

the whole R into the compact interval [eβmin
i , eβmax

i ]; and (3) it is monotone increasing in

b−i , C and is piecewise C1 with respect to all variables.

By definition, the form of the function Fi depends on the relative ranking of investors,

which, in turn, is determined by the ordering of the numbers bi/u
′
i(w1i) (see (47)). For

each permutation π of {1, · · · , N}, define the corresponding “sector”: the subset of Rn
+

such that, for all b in this sector, the sequence bπ(i)/u
′
π(i)(w1π(i)) is monotone increasing

in i. The borders of these sectors belong to hyperplanes for which biu
′
i(w1i) = bju

′
j(w1j)

for some i 6= j.

Clearly, since the function ψi is continuous, it suffices to prove the required result for

each fixed sector.34

As above, by abuse of notation, we reorder the investors for each fixed sector so that

(47) holds, and thus investor i will mean the investor whose rank is equal to i.

First, the fact that the image of the function ψi is inside the interval [eβmin
i , eβmax

i ]

34Here, one should in general take additional care of the situation when Hi hits the boundaries of

the sectors for an open set of parameters. Clearly, this cannot happen for generic values of parameters

(discount rates and endowments), and we therefore ignore it. The proof can be easily modified to cover

this non-generic situation.
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follows directly from the definition and the inequality:

0 ≤ Fi(X) ≤ X.

Now, we need the following auxiliary.

Lemma C.2 For any X inside a tranche, Fi is a piecewise C1-function of b and satisfies

∂Fi

∂bi
≤ 0

and

∂Fi

∂bj
≥ 0

for all j 6= i. Furthermore,

−bi
∂Fi

∂bi
≥
∑
j 6=i

bj
∂Fi

∂bj
.

Proof. Suppose first that we are in the regime F (X) < X. Then, by (49),

Fi(X) = Ii(bi u
′
S(w1 +X − F (X))) − w1i,

and

F (X) = F (b , x)

solves

F (X) −
∑

j

Ij(bj u
′
S(w1 +X − F (X))) = 0 .

Here, the summation is only over those investors j that participate in the tranche. Thus,

∂F

∂bj
=

I ′j(bj u
′
S(c1S))u′S(c1S)

1 +
∑

k I
′
k(bk u

′
S(c1S)) bk u′′S(c1S)

;
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and, hence, for j 6= i,

∂Fi

∂bj
= −I ′i(bi u′S(c1S)) bi u

′′
S(c1S)

I ′j(bj u
′
S(c1S))u′S(c1S)

1 +
∑

k I
′
k(bk u

′
S(c1S)) bk u′′S(c1S)

> 0

if investor j participates in the tranche, and the derivative is zero otherwise. Conse-

quently,

∑
j 6=i

bj
∂Fi

∂bj
= −(I ′i(bi u

′
S(c1S))) bi u

′
S(c1S)

∑
k 6=i I

′
k(bk u

′
S(c1S)) bk u

′′
S(c1S)

1 +
∑

k I
′
k(bk u

′
S(c1S)) bk u′′S(c1S)

and

∂Fi

∂bi
= I ′i(bi u

′
S(c1S))u′S(c1S)

− I ′i(bi u
′
S(c1S)) bi u

′′
S(c1S)

I ′i(bi u
′
S(c1S))u′S(c1S)

1 +
∑

k I
′
k(bk u

′
S(c1S)) bk u′′S(c1S)

= I ′i(bi u
′
S(c1S))u′S(c1S)

(
1 − I ′i(bi u

′
S(c1S)) bi u

′′
S(c1S)

1 +
∑

k I
′
k(bk u

′
S(c1S)) bk u′′S(c1S)

)
= I ′i(bi u

′
S(c1S))u′S(c1S)

1 +
∑

k 6=i I
′
k(bk u

′
S(c1S)) bk u

′′
S(c1S)

1 +
∑

k I
′
k(bk u

′
S(c1S)) bk u′′S(c1S)

.

Therefore,

−bi
∂Fi

∂bi
>
∑
j 6=i

bj
∂Fi

∂bj
.

Suppose now that the constraint F (X) ≤ X is binding, so that F (X) = X. Then, by

(39),

Fi(X) = Ii(λ(X) bi) − w1i,

with λ(X) solving

X −
∑

i

(Ii(λ(X) bi) − w1i) = 0

where the summation is only over investors i participating in the tranche. Differentiating,
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we get

∂λ(X)

∂bj
=

−I ′j(bj λ(X))λ(X)∑
k I

′
k(bk λ(X)) bk

and, hence,

∂Fi

∂bj
= − bi I

′
i(λ(X) bi)

I ′j(bj λ(X))λ(X)∑
k I

′
k(bk λ(X)) bk

> 0

if the investor j 6= i participates in the tranche and the derivative is zero otherwise.

Similarly,

∂Fi

∂bi
= I ′i(λ(X) bi)λ(X) − bi I

′
i(λ(X) bi)

I ′i(bi λ(X))λ(X)∑
k I

′
k(bk λ(X)) bk

= I ′i(λ(X) bi)λ(X)

∑
k 6=i I

′
k(bk λ(X)) bk∑

k I
′
k(bk λ(X)) bk

< 0 . (56)

if Fi(X) 6= 0 (that is, if investor i participates in the tranche), and is zero otherwise. A

direct calculation implies that

−bi
∂Fi

∂bi
=
∑
j 6=i

bj
∂Fi

∂bj
.

Note that the function Fi(x) is continuous and is a smooth function of all bi as long

as b varies inside a fixed sector. Therefore,

∂

∂bk
E[ui(w1i + Fi(b, X))]

=
∂

∂bk

∑
j

∫ Zj

Zj+1

ui(w1i + Fi(b, x))p(x)dx

=
∑

j

∫ Zj

Zj+1

u′i(w1i + Fi(b, x))

(
∂

∂bk
Fi(b, x)

)
p(x)dx

= E

[
u′i(w1i + Fi(b, X))

(
∂

∂bk
Fi(b, X)

)]
.

(57)

The derivatives of Zi(bj) do not appear on the right-hand side of (57) because the
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boundary terms cancel, as in (29).

Denote

c̃i0 = vi

(
Li − e−ρiE[ui(w1i + Fi(X, (Hi(C, b−i), b−i)))]

)
.

Then, using the identity v′i(x) = (u′i(v(x)))
−1, we get

∂Hi

∂bj
=

C Ai(c̃i0)E
[
u′i(w1i + Fi(X))

(
∂

∂bj
Fi(X)

)]
1 − C Ai(c̃i0)E

[
u′i(w1i + Fi(X))

(
∂

∂bi
Fi(X)

)]
where

Ai(x) = −u
′′
i (x)

u′i(x)
.

Lemma C.2 implies that

∑
j 6=i

bj
∂Hi

∂bj
=

C Ai(c̃i0)E
[
u′i(w1i + Fi(X))

∑
j bj

(
∂

∂bj
Fi(X)

)]
1 − C Ai(c̃i0)E

[
u′i(w1i + Fi(X))

(
∂

∂bi
Fi(X)

)]
≤

−C Ai(c̃i0)E
[
u′i(w1i + Fi(X)) bi

(
∂

∂bi
Fi(X)

)]
1 − C Ai(c̃i0)E

[
u′i(w1i + Fi(X))

(
∂

∂bi
Fi(X)

)] ≤ η bi = η Hi

(58)

where we have defined

η = max
eΩ

−C Ai(c̃i0)E
[
u′i(w1i + Fi(X))

(
∂

∂bi
Fi(X)

)]
1 − C Ai(c̃i0)E

[
u′i(w1i + Fi(X))

(
∂

∂bi
Fi(X)

)] .
It follows from the proof of Lemma C.2 that the derivative ∂

∂bi
Fi(X) stays uniformly

bounded when b varies on the compact subset eΩ and therefore η < 1. The proof is

complete.

Lemma C.3 Consider a map G = (Gi) : Ω → Ω with coordinate maps Gi(b1, · · · , bN),

such that the following is true:
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• The map G is continuous;

• There exists a finite set S of smooth hyper-surfaces such that G is C1 on Ω \ S;

and

• There exists a constant η < 1 such that

∑
j

∣∣∣∣∂Gi

∂dj

∣∣∣∣ ≤ η

for all i and all d = (dj) ∈ Ω \ S.

Then, the map G is a contraction in the l∞ norm ‖d‖l∞ = maxi |di|, so that

‖G(d1) −G(d2)‖l∞ ≤ α ‖d1 − d2‖l∞ .

In particular, G has a unique fixed point d∗ that satisfies

d∗ = lim
n→∞

Gn(d0)

for any d0 ∈ Ω.

Proof of Lemma C.3. With continuity, we may assume that the two points d1

and d2 are in a generic position, so that the segment,

d(t) = d1 + t (d2 − d1) , t ∈ [0, 1]

connecting d1 and d2, intersects the hyperplanes from S for a finite set

t1 < t2 < · · · < tm+1.
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Then,

|Gi(d
1) −Gi(d

2)| =

∣∣∣∣∣
m∑

k=1

∫ tk+1

tk

∑
j

∂Gi

∂dj

(d(t)) (d2
j − d1

j) dt

∣∣∣∣∣
≤ max

j
|d2

j − d1
j | η = η ‖d1 − d2‖l∞ .

(59)

The last claim follows from the contraction mapping theorem (see Lucas and Stockey

(1989), Theorem 3.2 on p. 50).

Proof of Lemma 6.2. Let bj = edj . By Lemma C.1,

∑
j

∂(GC)i

∂dj

=
∑
j 6=i

(Hi)
−1 ∂Hi

∂bj
bj ≤ α,

and the claim follows from Lemma C.3.

Proof of Lemma 6.5. Pick a parameter ζ and suppose that

GC(d, ζ1) ≥ GC(d, ζ2)

for all d and, for any fixed d = (di), the expression

(
(1 − α) eρS u′S

(
w0 + (1 − α)

∑
i

(
w0i − Ii(e

di e−ρi C−1)
)))−1

is larger for ζ1 than for ζ2. Pick a point d0 ∈ Ω. Then, since GC is monotone increasing

in d, we get:

G2
C(d0, ζ1) = GC(GC(d0, ζ1), ζ1) ≥ GC(GC(d0, ζ2), ζ1)

≥ GC(GC(d0, ζ2), ζ2) = G2
C(d0, ζ2). (60)
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Repeating the same argument, we get:

Gn
C(d0, ζ1) ≥ Gn

C(d0, ζ2)

for any n ∈ N. Sending n→ ∞ and using Lemma 6.2 and Lemma C.3, we get:

d∗(C, ζ1) ≥ d∗(C, ζ2)

for any C. This immediately yields that C∗(ζ1) ≥ C∗(ζ2), and therefore

d∗(C∗(ζ1) , ζ1) ≥ d∗(C∗(ζ2) , ζ1) ≥ d∗(C∗(ζ2) , ζ2)

and the claim follows.

Lemma C.4 Suppose that an increase in a parameter ζ leads to a decrease in the optimal

d∗. Then, this also leads to more selling.

Proof of Lemma C.4. A decrease in di , i = 1 , · · · , N is equivalent to an increase

in all coordinates of a = (ai) = (e−di) . Consequently, the number of the coordinates

of a for which ai u
′
i(w1i) > u′S(w1) increases. This is precisely #{senior}. Similarly, by

definition, Zfull selling = ZJ+1 is monotone increasing in all ai (see (13)), and Zno trade is

monotone decreasing in all coordinates of a. Finally, the participation index is equal to

1 if ai u
′
i(w1i) > u′S(w1) and therefore stays equal to 1 if ai increases.

Proof of Proposition 6.7. By the definition of FOSD dominance, an increase in

the distribution of X in the FOSD sense leads to an increase of

E[ui(w1i + Fi(b, X))] ,

for all i = 1 , · · · , N and, consequently, to an increase in the right-hand side of (18) for
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any fixed a. Therefore, the solution Hi to (18) also increases in response to this change

in the distribution of X. By Lemma 6.5, this leads to an increase of all coordinates of

vector b. The claims follow now from Lemma C.4.

Similarly, an increase in w0 and a decrease in ρS lead to an increase in the right-hand

side of (19). This leads to an increase in C, and therefore, by Lemma 6.5, all coordinates

of vector b increase.

Proof of Proposition 7.3. A direct calculation shows that, under the CARA

assumption, the vector b = (bi) solves

bi = eρi C
(
e−Ai w0i + e−ρi−Aiw1i E[1 − e−Ai Fi(X)]

)
, i = 1 , · · · , N. (61)

Suppose that

e−ρi e−Ai w1i

e−Ai w0i
>

e−ρj e−Aj w1j

e−Aj w0j
(62)

for some investors i and j, but rank(i) < rank(j). By definition, this means that

bi e
Ai w1i ≥ bj e

Aj w1j . (63)

We now claim that the inequality rank(i) < rank(j) implies

Ai Fi ≤ Aj Fj. (64)

Indeed, for all tranches in which investor i participates, the slopes of Ai Fi and Aj Fj

coincide by Proposition 5.5. Since j has a higher rank, Ai Fi(X) = 0 for all X for which

Aj Fj(X) = 0. The claim (64) follows now by continuity of Fi and Fj . Consequently,

E[1 − e−Ai Fi(X)] ≤ E[1 − e−Aj Fj(X)],

76



and therefore (61) and (62) together yield

bi e
Ai w1i = eρi C eAi (w1i−w0i) + C E[1 − e−Ai Fi(X)]

< eρj C eAj (w1j−w0j) + C E[1 − e−Aj Fj(X)] = bj e
Aj w1j ,

(65)

which contradicts (63). The proof is complete.

Proof of Proposition 8.2. Since the issuer is risk neutral, C = e−ρS . An increase

in w0i leads to an decrease in all coordinates of the map GC , and the claim follows from

Lemmas 6.5 and C.4.

Now, consider the optimal allocation with N + 1 investors and let (d̃ , dN+1) be the

corresponding vector, with the coordinate dN+1 corresponding to the new, (N + 1)th,

investor. Let G̃C be the map of Lemma 6.2, corresponding to the case of N+1 investors.

Further, let G̃
(N)
C be the “submap” of G̃C , consisting of the first N coordinates of G̃C .

Finally, let GC be the map corresponding to the N investor case. Then, the vector d̃

satisfies

d̃ = G̃
(N)
C (d̃, dN+1).

Similarly, the vector d corresponding to the N investor case solves

d = GC(d).

Now, let d̃N+1 = max{dN+1 , log(u′N+1(w1 N+1)} . By definition, d̃N+1 ≥ dN+1. Fur-

thermore, such a large d̃N+1 will correspond to a small ãN+1, satisfying

ãN+1 u
′
N+1(w1 N+1) ≤ 1 = u′S(w1).
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Therefore, by (47), such a d̃N+1 will not change the tranche structure35 and, consequently,

G̃
(N)
C (x , d̃N+1) = GC(x)

for any x. Thus, we have:

d̃ = G̃
(N)
C (d̃, dN+1) ≤ G̃

(N)
C (d̃, d̃N+1) = GC(d̃) .

Applying GC to this inequality repeatedly and using monotonicity of GC , we get:

d̃ ≤ GC(d̃) ≤ GC(GC(d̃)) ≤ · · · ≤ (GC)n(d̃).

Sending n→ ∞, we get, by Lemma 6.2, that

d̃ ≤ d.

The required result follows now from Lemma C.4.

Proof of Proposition 8.4. Let δ = eρi . Consider the function:

f(δ) = δ u′i

(
vi

(
ui(w0i) − δ−1E[ui(w1i + φ(X)) − ui(w1i)]

) )

for any fixed 0 ≤ φ(X) ≤ X. Then,

∂

∂δ
f(δ) = u′i

(
vi

(
ui(w0i) − δ−1E[ui(w1i + φ(X)) − ui(w1i)]

) )
+ δ−1E[ui(w1i + φ(X)) − ui(w1i)]u

′′
i

(
vi

(
ui(w0i) − δ−1E[ui(w1i + φ(X) − ui(w1i)]

) )
× v′i

(
ui(w0i) − δ−1E[ui(w1i + φ(X)) − ui(w1i)]

)
. (66)

35Since the issuer is risk neutral, tranches with indices smaller than J + 1 are not sold.
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Denote

z = vi

(
ui(w0i) − δ−1E[ui(w1i + φ(X)) − ui(w1i)]

)
.

Then,

w0i ≥ z ≥ vi

(
ui(w0i) − δ−1E[ui(w1i +X) − ui(w1i)]

)
= w0i − Pmax

i .

Using the identity v′i(x) = (u′i(vi(x)))
−1, we get:

∂

∂δ
f(δ) = u′i(z) + δ−1E[ui(w1i + φ(X)) − ui(w1i)]

u′′i (z)

u′i(z)

= u′i(z) − (ui(w0i) − ui(z))
1

Ri(z)
.

(67)

By assumption, the right-hand side is nonnegative. Hence, f(δ) is monotone increasing.

Therefore, by Lemma 6.5, the coordinates of the vector d∗(C) are increasing in ρi, and

the claim follows since the risk neutrality of the issuer implies C = e−ρS .
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